WEBINAR

Washout Considerations for ICP Analyses

THURSDAY, MARCH 11 9:00-10:00AM EST

SPEAKERS:

James King, M.Sc.
Director,
Production

Thomas Kozikowski Chemist, R&D

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Audience Participation

- Today we are going to poll the audience throughout the presentation to better understand our collective challenges in the lab.
- Most of these questions will be multiple choice, and we will get to see the results after each question.
- Don't fall asleep!

Question 1

 What type of instrument do you use in your laboratory?

- A. ICP-OES
- B. ICP-MS
- C. Both ICP-OES & ICP-MS

Causes for washout issues

- Solution matrix (HNO₃/HCl/HF/NH₄OH)
 - Could be from commercially available standards
 - Could be from specific sample preparation protocols
- Specific elemental affinity toward different types of plastics (Pump tubing, HF-resistant intro system)
- Spray chamber design (Single-pass, double-pass)
- Rinse protocols using the wrong acids/bases
- Allowing for the appropriate amount of time to rinse

Solution Matrix

- Most elements are stable using only HNO₃
- Some elements require HF for stability
 - HF stability often revolves around plastic surfaces
 - Some elements will precipitate in the presence of HF
- Some elements require HCl for stability
 - Only a few elements have issues in the presence of HCl
- Bromide/Iodide require basic matrices for stability
 - Some other elements are stable in base without HNO₃/HF

Question 2

 Does your company forbid the use of HF in the laboratory?

- A. Yes HF is forbidden
- B. No I can use HF

Solution Matrix - HF

Н			Not	Checl	ked by	y ICP	HF	Ele	mer	nts								Не
Li	Ве		HF	"th	ieve	es"	A	∖voi	d HI				В	С	N	0	F	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Solution Matrix - HCl

Н			Not	Checl	ked by	y ICP	НС	l Ele	eme	nts								Не
Li	Be		Can	wor	k w/o	o HF	A	voi	d HC				В	С	Z	0	F	Ne
Na	Mg										•		Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Solution Matrix – TEA/NH₄OH/H₂O

Н			Not	Checl	ked b	y ICP	Bas	ic El	eme	ents								Не
Li	Be		Can	work	w/o H	INO ₃ /	ΗF, bι	ut mu	st be l	oasic			В	С	Z	0	F	Ne
Na	Mg			Al Si P S Cl A											Ar			
K	Ca		Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Spray Chambers

- Classical borosilicate glass
 - If HF is used, problems testing B and Si
 - B and Si will leach out of the spray chamber
- HF Resistant Systems (PTFE/PFA)
 - If high levels are run, B, Si, and Hg can stick around
 - No leaching of B and Si from the material
 - Coating is essential to help with performance
- Double pass spray chambers increase washout time significantly

Question 3

- What type of spray chamber do you use on your primary ICP?
- A. Borosilicate Glass Cyclonic
- B. Borosilicate Glass Scott Style
- C. HF-Resistant Teflon Cyclonic
- D. HF-Resistant Teflon Scott Style

Sample Delivery

Peristaltic Pump

- Sample is introduced from autosampler probe through peristaltic pump tubing before it reaches the nebulizer
- Many elements stick to the PVC peristaltic pump tubing
- Syringe Drive / Switching Valve Systems
 - Sample is loaded into a sample loop without passing through peristaltic pump tubing
 - PVC tubing is eliminated, but a switching valve is added to the equation

Question 4

- •What type of sample delivery system do you use on your primary ICP?
- A. Standard Peristaltic Pump
- B. Peristaltic Pump with Switching Valve
- C. Syringe Drive with Switching Valve

Peri-Pump vs. Syringe Drive on MS

	Blank1	Blank2	Blank3	Sample	+4ppb Spike	Blank4	Blank5	Blank6	
95Mo	6	6	12	1,229	28,443	297	116	77	Peri Pump
95Mo	17	11	13	756	28,443	56	15	15	Syringe Drive
121Sb	17	9	23	437	70,605	1,547	731	443	Peri Pump
121Sb	9	2	4	193	70,605	7	2	11	Syringe Drive
178Hf	36	18	26	5	134,673	134	87	64	Peri Pump
178Hf	0		0	4	134,673		2		Syringe Drive
181Ta	34	55	43	27	461,654	1,467	801	514	Peri Pump
181Ta	20	13	11	7	461,654	87	20	29	Syringe Drive
184W	85	58	58	394	127,417	2,876	1,097	669	Peri Pump
184W	35	26	44	150	127,417	420	226	141	Syringe Drive
209Bi	78	75	50	131	271,275	7,664	2,590	1 323	Peri Pump
					-		-	_	·
209Bi	18	18	31	51	271,275	38	22	24	Syringe Drive
232Th	5	35	12	1,467	349,163	478	173	163	Peri Pump
232Th	15	7	6	15	349,163	26	30	15	Syringe Drive

The sample run in this example is $100\mu g/g$ Mn in 1% v/v HNO₃.

- Washout of select "sticky" elements after a 4ppb spike containing over 60 elements.
- Bi is by far the worst.
- PVC tubing is used for peripump introduction systems.
- Faster washout of elements using syringe drive systems allows us to run more samples free of "memory" interferences.
- This results in less maintenance when running high TDS samples.

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Problem Elements

Н			Not	Checl	ked by	y ICP	Elemen	ts with	washou	t issues								Не
Li	Ве												В	С	Z	0	F	Ne
Na	Mg												Αl	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Why?

Н			Not s	ure, P	VC tu	bing?	HNO	₃ mak	es it s	ticky								Не
Li	Be		Lack o	of HF m	akes it	sticky	HCl m	iakes i	t preci	pitate			В	С	Ν	0	F	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	J	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Are you running elements you don't need?

- Custom solutions can help you rid your analyses of unnecessary problematic elements
- Concentration ranges can be high (for user dilution)
- Or they can be ready made to save time at the bench
- IV can ensure that your solutions will be stable and suitable for your methods
- We can even make recommendations for elemental/matrix compatibility

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Common Rinse Solutions

• HNO₃

- 5-10% on an OES
- 1-2% on a MS
- HCl
 - 5-10% on an OES
 - 1-2% on a MS

- RBS-25
 - 2.5% on an OES
 - Not Recommended on MS due to high Sodium
- H₂O
 - Can be effective enough for Na, K, Ca, etc.

Rinse Solutions with HF

- HNO₃
 - 5-10% on an OES
 - 1-2% on a MS
- HF
 - 0.1-2% on an OES
 - 0.05-0.5% on a MS

 If using borosilicate glass nebulizer and spray chamber

- Limit HF to a max of 0.2%
- B and Si results will be unreliable
- If using an HF resistant nebulizer and spray chamber

- Can go up to 2-3%
- >3% HF will degrade the coating

Specialty Rinse Solutions

- NH₄OH
 - 1-5% for OES or MS
 - Use for B, Br, I, Hg
- HCl / Thiourea
 - 1-10% HCl
 - 0.5% Thiourea
 - Use for Hg, Au, Os

- HCl / Hydroxylamine·HCl
 - 10% HCl
 - 0.5% NH₂OH·HCl
 - Use for Os

Utilize real-time output monitoring

- Some instrument software packages allow you to monitor a line in real time and record the signal vs time
- This can help with method development activities in determining appropriate rinse times between samples
- It can also be helpful in assessing the effectiveness of different rinse solutions

100ppm Boron in 0.1% v/v HNO₃

Monitoring Washout on B 208.959nm

Rinse w/ 5% HNO₃

Rinse w/ 5% NH₄OH

No obvious difference in washout at first glance.

Monitoring Washout on B 208.959nm

Rinse w/ 5% HNO₃

Rinse w/ 5% NH₄OH

5% HNO₃ doesn't go to baseline even within 2 minutes.

5% NH₄OH rinses it out within 80 seconds.

Washout Considerations

- Boron took much longer to washout when rinsing with the typical 5% v/v HNO₃ rinse.
- Washout time was significantly reduced using NH₄OH.
- Time graph only tells part of the story.
 - A very small peak is still present when viewing in spectra mode.
 - Time graph can help determine estimated washout.
 - Verify absence of an element by viewing the spectra.

Experiment with different rinse strategies

- Switching valve and syringe drive systems pose an extra challenge to washout due to the use of a dedicated carrier solution.
- Most ICP-MS users prefer to use HNO₃ to prevent
 40Ar³⁵Cl+ & ⁴⁰Ar³⁷Cl+ from interfering on ⁷⁵As & ⁷⁷Se.
- Running rinses as samples in varying order can help determine which types of rinses are more effective for certain elements and intro-system setups.

50ppb Os run followed by 8 rinses run as samples (Rinses shown)

2 Rinse strategies were performed in pairs

Carrier solution & rinse station contained 1% HNO₃.

Assist system from GE used with glass double pass spray chamber and Duramist Nebulizer

When HNO₃ is run first, some Os appears to stick around even after HCl & Thiourea rinses (likely tubing or valve).

When HCl and Thiourea are run first, most Osmium is rinsed out by rinse number 4.

 HNO_3 causes some residual osmium to give a higher signal due to OsO_x changing the nebulization efficiency.

The HCI/Thiourea rinses appeared to rinse out the osmium beyond the originally calculated detection limit.

Question 5

- What solution do you use in your autosampler rinse station?
- A. Deionized Water
- B. Dilute HNO₃
- C. Dilute HCl
- D. Dilute HNO₃/HCl
- E. Something Else

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Peristaltic Pump Tubing

- If using peristaltic pump tubing for sample delivery...
 - Consider changing the tubing daily
 - Or directly after a run with "sticky" elements

Example of effect of changing tubing

Example of effect of changing tubing

²⁰²Hg Washout

Switching Valve Systems

- Sample loops do inevitably become dirty
- When not in use, make sure carrier solution flows through the sample loop to continuously clean it
- Replacing valve sleeves can help when routine cleaning no longer helps.

Switching Valve Systems

- If using a sample loop, shaking the loop while it is rinsing can help clear out stuck elements.
- This phenomenon can be observed using real-time display

Sample Loop Connections

1st time shaking the loop.

2nd time shaking the loop.

Less contaminant remains, element likely getting stuck in the connector to the valve.

Weekly Soaking of Various Parts

Soak dirty spray chambers, nebulizers, and valve sleeves

in 25% solution of RBS-25.

• Rinse with lots of DI H₂O.

More tips and tricks for washout issues

- Keep up with routine instrument maintenance to prevent other washout issues.
 - Torch parts, cones/interface, tubing, autosampler probe, rinse station reservoirs
 - Keep a detailed log of maintenance steps and record performance report data

Example of a Daily Maintenance Log

More tips and tricks for washout issues

- Keep several different rinse solutions on hand to washout high TDS samples more effectively
 - This will keep your lab running smoothly to get more done!

Final Thoughts

- Identify the elements that give you trouble
- Experiment with different rinse solutions
- Keep up with routine instrument maintenance
- Identify specific causes for washout issues
- Develop methods that include effective rinse strategies and only the elements you require

Technical Support – Available to Everyone Online Resources at inorganicventures.com

Customers can visit our website's Tech Center, which includes:

- Interactive Periodic Table
- Sample Preparation Guide
- Trace Analysis Guide
- ICP Operations Guide
- Expert Advice
- And much, much more.

