BE BOLD

2022 INORGANIC VENTURES WEBINAR SERIES

A SYNOPSIS OF ICP Washout Techniques

THURSDAY, JANUARY 20 9:00-9:30AM EST

PRESENTED BY:

Thomas Kozikowski Manager, Quality Control

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Causes for washout issues

- Solution matrix (HNO₃/HCI/HF/NH₄OH)
 - Could be from commercially available standards
 - Could be from specific sample preparation protocols
- Specific elemental affinity toward different types of plastics (Pump tubing, HF-resistant intro system)
- Spray chamber design (Single-pass, double-pass)
- Rinse protocols using the wrong acids/bases
- Rinse times are not long enough

Solution Matrix

- Most elements are stable using only HNO₃
- Some elements require HF for stability
 - HF stability often revolves around plastic surfaces
 - Some elements will precipitate in the presence of HF
- Some elements require HCl for stability
 - Only a few elements have issues in the presence of HCl
- Bromide/Iodide require basic matrices for stability
 - Some other elements are stable in basic pH

Solution Matrix - HF

Н			Not	Checl	ked by	y ICP	HF	Ele	mer	nts								Не
Li	Be		НЕ	"th	ieve	es"	A	Avoi	d HI	=			В	С	Z	0	F	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Solution Matrix - HCl

Н			Not	Checl	ked by	y ICP	НС	l Ele	eme	nts								Не
Li	Be		Can	wor	k w/o	o HF	Д	voi	d HC				В	С	Z	0	H	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Solution Matrix – TEA/NH₄OH/H₂O

Н			Not	Checl	ked by	y ICP	Bas	ic El	eme	ents								Не
Li	Be		Can	work	w/o H	INO ₃ /	HF, bι	ıt mu	st be l	oasic			В	C	Z	0	F	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Spray Chambers

- Classical borosilicate glass
 - If HF is used, problems testing B and Si
 - B and Si will leach out of the spray chamber
- HF Resistant Systems (PTFE/PFA)
 - If high levels are run, B, Si, and Hg can stick around
 - No leaching of B and Si from the material
 - Coating is essential to help with performance
- Double pass spray chambers increase washout time significantly

Sample Delivery

- Peristaltic Pump
 - Sample is introduced from autosampler probe through peristaltic pump tubing before it reaches the nebulizer
 - Many elements stick to the PVC peristaltic pump tubing
- Syringe Drive / Switching Valve Systems
 - Sample is loaded into a sample loop without passing through peristaltic pump tubing
 - PVC tubing is eliminated, but a switching valve is added to the equation

- Washout of select "sticky" elements after a 4ppb spike containing over 60 elements.
- Bi is by far the worst.
- PVC tubing is used for peri-pump introduction systems.
- Faster washout of elements using syringe drive systems allows us to run more samples free of "memory" interferences.
- This results in less maintenance when running high TDS samples.

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Problem Elements

Н			Not	Checl	ked by	y ICP	Elemen	ts with	washou	t issues								Не
Li	Be												В	С	N	0	F	Ne
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ва	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	J	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Why?

Н			Not s	sure, P	VC tu	bing?	HNO	₃ mak	es it s	ticky								Не
Li	Be		Lack o	of HF m	akes it	sticky	HCl m	iakes i	t preci _l	pitate			В	C	N	0	F	Ne
Na	Mg												Al	Si	Р	S	C	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	_	Xe
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Common Rinse Solutions

• HNO₃

- 5-10% on an OES
- 1-2% on a MS
- HCl
 - 5-10% on an OES
 - 1-2% on a MS

- RBS-25
 - 2.5% on an OES
 - Not Recommended on MS due to high Sodium
- H₂O
 - Can be effective enough for Na, K, Ca, etc.

Rinse Solutions with HF

- HNO₃
 - 5-10% on an OES
 - 1-2% on a MS
- HF
 - 0.1-2% on an OES
 - 0.05-0.5% on a MS

 If using borosilicate glass nebulizer and spray chamber

- Limit HF to a max of 0.2%
- B and Si results will be unreliable
- If using an HF resistant nebulizer and spray chamber

- Can go up to 2-3%
- >3% HF degrades the coating

Specialty Rinse Solutions

- NH₄OH
 - 1-5% for OES or MS
 - Use for B, Br, I, Hg
- HCl / Thiourea
 - 1-10% HCl
 - 0.5% Thiourea
 - Use for Hg, Au, Os

- HCl / Hydroxylamine·HCl
 - 10% HCl
 - 0.5% NH₂OH·HCl
 - Use for Os

Utilize real-time output monitoring

- Some instrument software packages allow you to monitor a line in real time and record the signal vs time
- This can help with method development activities in determining appropriate rinse times between samples

 It can also be helpful in assessing the effectiveness of different rinse solutions

Monitoring Washout on B 208.959nm

Rinse w/ 5% HNO₃

Rinse w/ 5% NH₄OH

5% HNO₃ doesn't go to baseline even within 2 minutes.

5% NH₄OH rinses it out within 80 seconds.

Experiment with different rinse strategies

- Switching valve and syringe drive systems pose an extra challenge to washout due to the use of a dedicated carrier solution.
- Most ICP-MS users prefer to use HNO₃ to prevent ⁴⁰Ar³⁵Cl⁺
 40Ar³⁷Cl⁺ from interfering on ⁷⁵As & ⁷⁷Se.
- Running rinse solutions as samples in varying order can help determine which types of rinses are more effective for certain elements and intro-system setups.

Key Topics

- Causes for washout issues
- Introduction system components
- Elements of concern
- Common rinse solutions / strategies
- Maintenance recommendations

Peristaltic Pump Tubing

- If using peristaltic pump tubing for sample delivery...
 - Consider changing the tubing daily
 - Or directly after a run with "sticky" elements

Example of effect of changing tubing

Example of effect of changing tubing

²⁰²Hg Washout

Switching Valve Systems

- Sample loops do inevitably become dirty
- When not in use, make sure carrier solution flows through the sample loop to continuously clean it
- Replacing valve sleeves can help when routine cleaning no longer helps.

Switching Valve Systems

- If using a sample loop, shaking the loop while it is rinsing can help clear out stuck elements.
- This phenomenon can be observed using real-time display

Weekly Soaking of Various Parts

Soak dirty spray chambers, nebulizers, and valve sleeves

in 25% solution of RBS-25.

• Rinse with lots of DI H₂O.

More tips and tricks for washout issues

- Keep up with routine instrument maintenance to prevent other washout issues.
 - Torch parts, cones/interface, tubing, autosampler probe, rinse station reservoirs
 - Keep a detailed log of maintenance steps and record performance report data

Example of a Daily Maintenance Log

Final Thoughts

- Identify the elements that give you trouble
- Experiment with different rinse solutions
- Keep up with routine instrument maintenance
- Identify specific causes for washout issues
- Develop methods that include effective rinse strategies and only the elements you require

Technical Support – Available to Everyone Online Resources at inorganicventures.com

Customers can visit our website's Tech Center, which includes:

- Interactive Periodic Table
- Sample Preparation Guide
- Trace Analysis Guide
- ICP Operations Guide
- Expert Advice
- And much, much more.

