IV Response to USP 232 / ICH Q3D

Brian Alexander

Background

Timeline

2013 – USP General Chapter <232> published

2014 – USP reviewed draft ICH Q3D

2015 – USP limits match Q3D (15 elements)

2016 – USP includes 9 additional Q3D elements

2017 – USP 40–NF 35, First Supplement fully aligned with ICH Q3D

IV Stock Products

2012

- IV-STOCK-37 (discontinued 2014)
- IV-STOCK-38 USP precious metals @100 ppm (Ir, Os, Pd, Pt, Rh, Ru)

2014

- IV-STOCK-40 USP Oral (Cu, Ni, Mo, V, Cd, Hg, Pb, As)
- IV-STOCK-41 USP Parenteral (Cu, Ni, Mo, V, Cd, Hg, Pb, As)

2016

IV-STOCK-60 – USP Oral (Dec. 2015 limits)

2018

• 6 additional stock products (IV-STOCK-65, -66, -67, -68, -69, -70)

IV Stock Products

IV products grouped by

Element Class: 1, 2A, 2B, 3

Permitted Daily Exposures (PDE)

TABLE 1 (USP 232) / TABLE A.2.1 (ICH Q3D)

Element	Class	Ε 1 (USP 232) / TAE Oral PDE μg/day	Parenteral PDE, µg/day	Inhalation PDE, µg/day	
Cd	1	5	2	2	IV-STOCK-65 (10% v/v HNO3)
Pb	1	5	5	5	
As	1	15	15	2	
Hg	1	30	3	1	
Co	2A	50	5	3	IV-STOCK-66 (5% v/v HNO3)
٧	2A	100	10	1	
Ni	2A	200	20	5	
TI	2B	8	8	8	IV-STOCK-67 (10% v/v HCI)
Au	2B	100	100	1	
Pd	2B	100	10	1	
lr	2B	100	10	1	
Os	2B	100	10	1	
Rh	2B	100	10	1	
Ru	2B	100	10	1	
Se	2B	150	80	130	
Pt	2B	100	10	1	
Ag	2B	150	10	7	IV-STOCK-68 (5% v/v HNO3)
Li	3	550*	250	25	IV-STOCK-69* (5% v/v HNO3 / trace HF)
Sb	3	1200*	90	20	
Ва	3	1400*	700	300	
Мо	3	3000*	1500	10	
Cu	3	3000*	300	30	
Sn	3	6000*	600	60	
Cr	3	11000*	1100	3	

*10x lower

IV Stock Products

Individual Component / Option 1

Assumes ≤10 g/day of drug product

TABLE 3 (USP 232) / Table A.2.2 (ICH Q3D)

	Inhalation Conc. µg/g	Parenteral Conc. μg/g	Oral Concentration μg/g	Class	Element
	0.2	0.2	0.5	1	Cd
	0.5	0.5	0.5	1	Pb
	0.2	1.5	1.5	1	As
	0.1	0.3	3	1	Hg
	0.3	0.5	5	2A	Со
	0.1	1	10	2A	٧
	0.5	2	20	2A	Ni
IV-STOCK-70 (20% v/v HCI)	0.8	0.8	0.8	2B	Ti
	0.1	10	10	2B	Au
	0.1	1	10	2B	Pd
	0.1	1	10	2B	lr
	0.1	1	10	2B	Os
	0.1	1	10	2B	Rh
	0.1	1	10	2B	Ru
	13	8	15	2B	Se
	0.7	1	15	2B	Ag
	0.1	1	10	2B	Pt
	2.5	25	55	3	Li
	2	9	120	3	Sb
	30	70	140	3	Ва
	1	150	300	3	Мо
	3	30	300	3	Cu
	6	60	600	3	Sn
	0.3	110	1100	3	Cr

Design of Stock IV Products

Requested/Approved 232 & Q3D standards

Class 1 elements - ~50 unique combinations

Class 2A elements - ~65 unique combinations

Class 2B elements - ~10 unique combinations

Class 3 elements – ~40 unique combinations

Large variability in requested combinations and concentrations, e.g.,

- elements omitted (e.g., Os)
- multiples of limit concentrations (2x, 10x, etc.)

Product Design Criteria

Stability/Compatibility

- Safety (Os)
- 4 year shelf-life

Product Design Criteria

Stability/Compatibility

- Safety (Os)
- 4 year shelf-life

If 2B elements required...
HCl better matrix choice

All 24 elements @100 ug/mL stable for >4 years in 40% HCl/tr HF

limited solubility, photosensitive

Preparation Tips for 232 / Q3D Standards

Stability/Compatibility

- 1. Criteria for ≥4 years shelf-life **do not** apply to diluted working standards
- 2. Avoid osmium in HNO₃, but trace HNO₃ (≤5% v/v) does not appear to affect data quality if measured immediately (daily standards)
- 3. Mercury and gold analyses challenging if matrix is HNO₃ (no chloride present)
- 4. Ensure TI is sourced from oxide $(TI_2O_3 = TI^{+3})$ and not nitrate $(TINO_3 = TI^{+1})$

Questions?

Technical Support – Available to Everyone Online Resources at inorganicventures.com

Customers can visit our website's Tech Center, which includes:

- Interactive Periodic Table
- Sample Preparation Guide
- Trace Analysis Guide
- ICP Operations Guide
- Expert Advice
- And much, much more.

