INTRODUCING READY TO USE

Discrete Analyzer ReAGENTS WEAPONS OF MASS PRODUCTION

THURSDAY, FEBRUARY 2 8:00 AM EST | 1:00 PM UTC

PRESENTED BY: Mike Booth, Director, Technical

Mission Briefing

- About Inorganic Ventures
- What is a Discrete Analyzer?
- Instrument Tips & Tricks
- Put time back on your side
- Backup Supporting Data
- Introducing Discrete Analyzer ReAGENTS
- Questions

What does Inorganic Ventures do?

Inorganic Ventures (IV) is a manufacturer of inorganic Certified Reference Materials (CRMs) commonly referred to as a "standards", "chemical standards" or "calibration standards."

• Elemental Standards

- Conductivity Standards
- High Purity Single Element •
- Custom Blends
- pH Standards

0

• Reagents

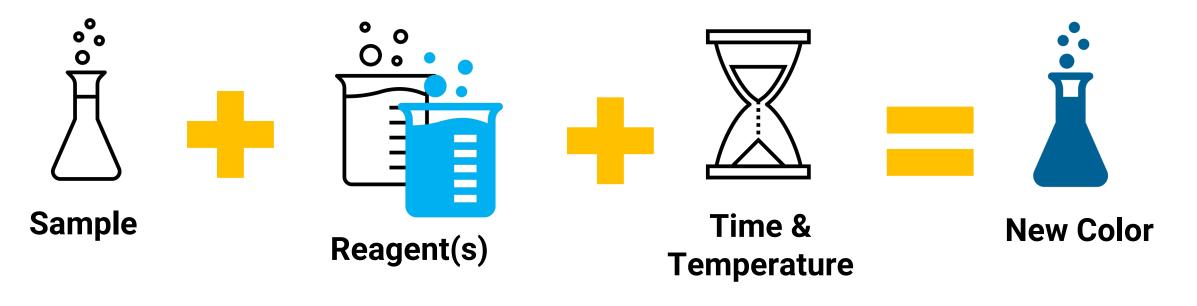
Titrants

What is a Discrete Analyzer? THE LATEST INTELLIGENCE

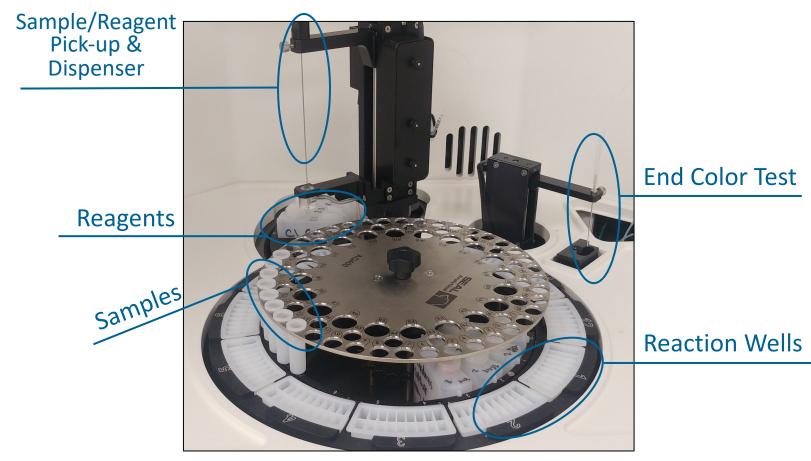
What is a Discrete Analyzer?

An instrument that tests samples:

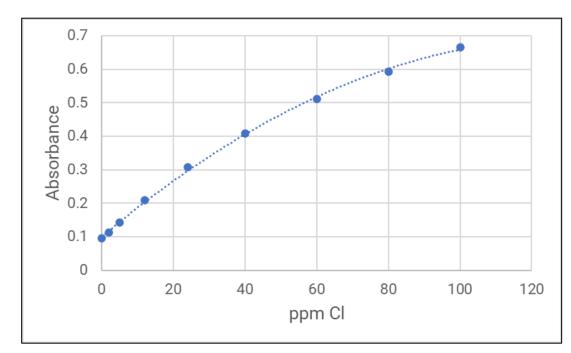
One sample at a time One analyte at a time



How Do Discrete Analyzers Work?


Discrete Analyzers use wet chemistry methods to make the samples change color depending on the concentration of the analyte.

Discrete Analyzers: Instrument Mechanics


- Automated steps and data collection
- Up to 8 hours of lab work can be automated to run within 1 hour

How do Discrete Analyzers Work?

The new color generated in the reaction is compared against a calibration curve to calculate the sample's concentration of the analyte.

The calibration curve is made from IV's existing CRM products!

Instrument Surveillance Tips & Tricks

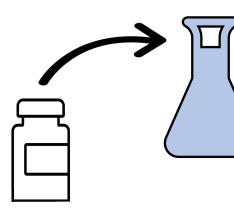
- Follow the manufacturers' recommendations for maintenance and have your analyser serviced to comply with UKAS/ISO:17025 Accreditation.
- It is recommended that any operator is ideally trained by an accredited person.
- Always keep detailed records for maintenance and training.

- Refill diluent bottles the night before to allow them to degas and prevent outliers from microbubbles.
- If possible, put reagents on the instrument the night prior to analysis to allow them to equilibrate.
- Always double check tubing before you start your analysis.

- Audit your processes for sources of contamination.
 - DI/RO water system needs to be working correctly as failure can lead to certain compounds like Nitrates to be present.
 - Clearly label reagent vessels and avoid using the same vessel for multiple reagents.
 - Be mindful of contamination from the air. For example: NH_3 and CI.
 - Also be cautious of cross contamination from the reagents themselves. For example: Hg from Cl reagents
 - If reusing Reagent Vessels make sure to wash them well with DI Water and dry.

- Use Reagents and Calibration materials that comply with the relevant ISO accreditation standards.
- If making your own standards or reagents, ensure that they are clearly identified with the following information:
 - Reagent Name
 - Expiry Date
 - Source chemicals with their expiry date
 - Name of Manufacturer

- 1. It can be beneficial to filter Chloride Colour Reagent through a GFC paper and store in light proof container before use.
- 2. Sulphate Reagent sometimes needs sonicating to maintain optimum performance.
 - a) Not all gelatins will perform similarly, keep that in mind when purchasing new material.
- 3. Make sure to properly matrix match your samples and standards. For example, the Ammonia method is extremely pH sensitive, so ensure that samples and standards are pH adjusted similarly.
- 4. Carefully monitor your background absorbances. High backgrounds can be a source of failing correlation coefficients for PO₄ and SO₄.


Discrete ReAGENTS put time back on your side

Discrete Analyzer Reagents

Time Study – Chloride Reagent

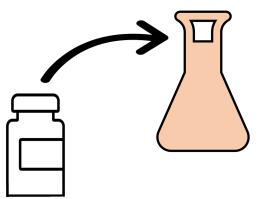
Step 1:

Weigh Ferric nitrate & transfer to flask.

Step 2:

Dilute to volume & mix.

Step 5:


Measure Ferric nitrate solution & transfer to flask.

Step 6:

Measure Mercuric thiocyanate solution & transfer to flask.

Step 7:

Dilute to volume & mix.

Step 3:

Weigh Mercuric thiocyanate & transfer to flask.

Step 4:

Dilute to volume & mix.

	Phosphate	Method	Sulfate Method	Chloride Method		
DIY Reagents	EPA Method 365.1 Rev 2.0	/ ISO Method 15923-1	ISO Method 15923-1	EPA Method 325.2 / ISO Method 15923-1		
	Color Reagent	Ascorbic Reagent	Turbidity Reagent	Combined Color Reagent		
Starting Matorials	Potassium antimonyl tartrat	te	Barium Chloride	Ferric Nitrate		
Starting Materials Required	Ammonium molybdate	Ascorbic Acid	Sodium Chloride	Mercuric thiocyanate		
Required	Sulfuric acid		Gelatin	Methanol		
Time to DIY (2-5L)	1 hour 30 mins	20 mins	1 hour 30 mins	1 hour 45 mins		
Projected Stability	2 months	1 week	1 week	3 months		
Notes	Sulfuric acid will need time cool	to	Gelatin needs to be qualified	Needs to be filtered before use		
Ready-to-use	Phosphate Method		Sulfate Method	Chloride Method		
Discrete	EPA Method 365.1 Rev 2.0 / ISO Method 15923-1		ISO Method 15923-1	EPA Method 325.2 / ISO Method 15923-1		
ReAGENTS	Color Reagent	Ascorbic Reagent	Turbidity Reagent	Combined Color Reagent		
IV Product	DA-PO4-COLOR	DA-PO4-ASCORBIC	DA-SO4-TURB	DA-CL-COLOR		
Guaranteed Stability	6+ Months	6+ Months	6+ Months	6+ Months		

Every Agent needs occasional backup SUPPORTING DATA

Stability Studies

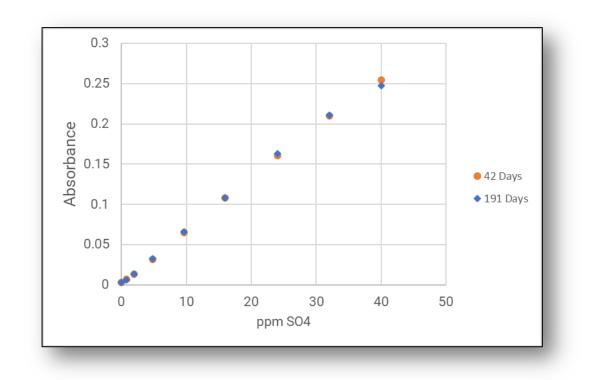
Our biggest challenge is Stability, Stability!

IV's ISO:17034 accreditation requires a robust product stability program.

- Long-Term Stability
- Transport Stability

Stability Study Design

- 1. Regular testing of reagents stored refrigerated and at room temperature.
 - All reagents are protected from light
- 2. Calibration curve fits, absorbances, and results of control samples are being tracked over the study.
- 3. Transport studies for short term storage in extreme heat and cold conditions.



Lot Consistency

Maintaining a constant baseline is an important factor in sample analysis using discrete analyzers.

Having consistently manufactured lots over time can help troubleshoot baseline issues.

Sulphate Calibration Standard Absorbance 42 Days vs 191 Days								
0 ppm	0.8 ppm	2 ppm	4.8 ppm	9.6 ppm	16 ppm	24 ppm	32 ppm	40 ppm
-6.5%	-1.3%	1.0%	1.7%	0.9%	0.2%	1.5%	0.3%	-2.9%

Detailed Product Documentation

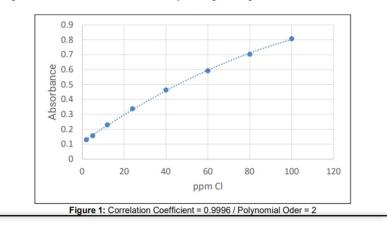
DISCRETE ANALYZER REAGENT Mercuric thiocyanate / Ferric nitrate solution

Catalog No: DA-CL-COLOR Lot No: T2-DA726755

> Starting Material: Starting Material Lot No:

Mercury (II) thiocyanate IV-2397

Starting Material: Starting Material Lot No:


Iron (III) nitrate nonahydrate IV-2394

NOMINAL CONCENTRATION: 0.6255 g/L Mercury (II) thiocyanate / 30.3 g/L Iron (III) nitrate nonahydrate

This solution is a reagent and is not intended to be used as a certified reference material.

PREPARATION

This reagent solution is ready to use without further preparation for analyzing Chloride in water utilizing discrete analyzer methods based upon EPA Method 325.2. Figure 1 demonstrates a Chloride calibration curve generated on a SEAL AQ400 discrete analyzer using this reagent.

Concentration	Result	Acceptance Limits
2	0.1296	0.0850 - 0.1416
5	0.1570	0.1066 - 0.1776
12	0.2292	0.1570 - 0.2616
24	0.3372	0.2308 - 0.3846
40	0.4629	0.3058 - 0.5096
60	0.5926	0.3829 - 0.6381
80	0.7032	0.4446 - 0.7410
100	0.8072	0.4992 - 0.8320

STORAGE AND HANDELING

Store refrigerated at 4° C while in sealed TCT bag. After opening the sealed TCT bag keep cap tightly sealed when not in use. Continue to store bottle at 4° C when not in use. Do not return removed aliquots to container. Allow for reagent to reach room temperature and shake well before use.

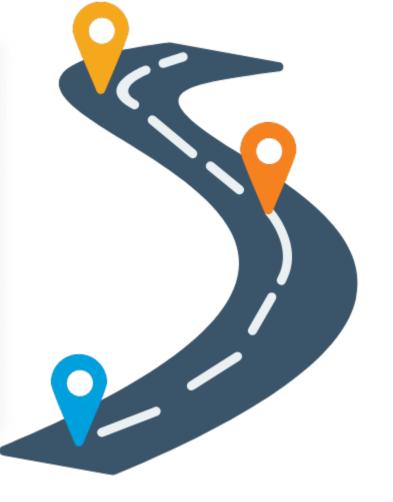
- Reagent Composition
- Source of Method Chemistry
- Sample Calibration Curve
- Absorbance Data with Acceptance Limits

Introducing Discrete Analyzer ReAGENTS: MISSION RESPONSIBLE

Discrete Analyzer ReAGENTS

- Chloride
 - DA-CL-COLOR-125ML \$73
- Sulfate
 - DA-SO4-TURB-125ML \$150
- Phosphate (may be tested as Phosphorus)
 - DA-PO4-ASCORBIC-125ML
 \$188
 - DA-PO4-COLOR-125ML \$95

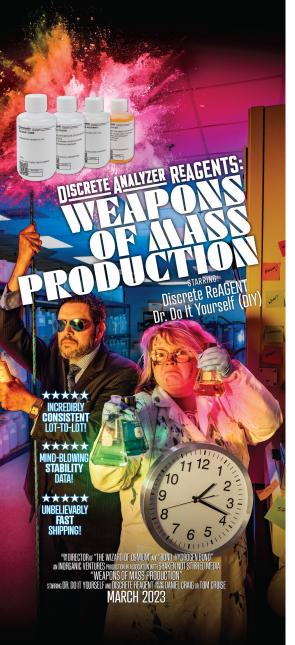
- Chloride Method
 - ICCL1
- Sulfate Method
 - ICSO41
- Phosphate Method
 - ICP041
 - ICPP041



Stay tuned... MORE REAGENTS COMING TO A LAB NEAR YOU

2023 Roadmap

Method	MFG & Initial Test	1 Month	3 Month	6 Month	9 Month	12 Month	15 Month	18 Month
Chloride (EPA 325.2)								
Sulfate (ISO 15923-1)								
o-Phosphate (EPA 365.1)								
Ammonia (ISO 15923-1)								
Hardness (EPA 130.1)				_				
NO ₃ /NO ₂ (Cd Reduction, EPA 353.2)								
Silica (EPA 370.1)								
NO ₃ /NO ₂ (Hydrazine Reduction, ISO 15923-1)								


IV will be adding more methods throughout 2023: Alkalinity, Cyanide, Fluoride, Chromium & More!

Let our Discrete ReAGENTS infiltrate your lab!

Claim a free 30mL sample

PRODUCED BY: FINORGANIC

Join us at Pittcon for the Movie Premier

Presentations on the show floor:

Benefits of Pre-Made Reagents for Discrete Analyzers Mike Booth | Tuesday, March 21 at 3pm

Forging a Path to the SI: The Development of Primary Certified Reference Materials (PCRMs) Madeline Gozzi | Wednesday, March 22 at 10am

info@inorganicventures.com www.inorganicventures.com/forum