

Capabilities Catalog

INORGANIC CUSTOM & STOCK CERTIFIED REFERENCE MATERIALS

Brian Alexander, PhD

Mark Allen

Our Employees Are to Our

Michael Booth

Tom Borak

Jessica Broche

Joseph Burns

Micah Cornett

Aaron Craggett

Anna Falls

Tyler Farnsworth, PhD

Laura Finley

Olivia Forbes

Brenda Francis

Christopher Gaines

Danielle Hinkley

James Holcomb

Grace Hurst

Eleanor Inman

Jeff Itle

Ashley Jones

Madeline Marshall

Ashley Michael

Amanda Miller

Michael Newman

Michele Newton

Lesley Owens, PhD

Shalin Presgraves

Courtney Rainer

Josh Rancourt

Mollie Reid

Abigail Resner

Kelsey Stroupe

Kristin Stroupe

Chris Sumner

Katie Tindall

Daniel Todd

Uyen Trong

the Key Element Success

Lorran Amonette

Ryan Anderson

Christopher Cruz

Elizabeth Day

Anne De Gastyne

Justin DiRico

Marshall Durrett

Christopher Estes

Paul Gaines, PhD

Courtney Gibson

Madeline Gozzi

Ashley Grose

Deborah Haines

Lee Hawthorne

Muzzammil Khan

James King Jr.

Brandon Kocher

Thomas Kozikowski

Theron Lester

William Marble

Marie Pauley

Autumn Phillips

Jesse Phillips

Ragan Phillips

Nicholas Plymale

Brittany Porterfield

Angela Robson

Donna Senn

Brittany Sharpe

Tammy Shepherd

Karen Sporakowski

Adam Stevens

Joshua Underwood

Jodie Wall

Rebecca Weddle

Colleen Worthington

Justin Yalung

Kayleigh Young

TABLE OF CONTENTS

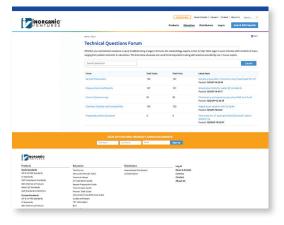
ION CHROMATOGRAPHY
Anion Standards86
Cation Standards88
Multi-Ion Standards89
Eluent Concentrates90
■ EPA Standards91
■ Instrument Cross-Reference Table – IONS37
ATOMIC ABSORPTION
■ Single-Element Standards95
Modifiers, Buffers & Releasing Agents98
WATER QC
■ Water Standards100
WET CHEMISTRY
Wet Chemical Standards
Conductivity Standards102
pH Standards and Colored pH Standards103
Cyanide Standards104
pH Buffers Specially Formulated for USP <791> 105
Sample Preparation
Dissolution Reagents & Stabilizers106
Certified Titrants and Reagents
Certified Titrants107
Reagents108
Discrete Analyzer Reagents
INDEX
■ Index by Subject109
■ Index by Catalog Number110
Ordering, Terms & Conditions

QUALITY, CUSTOMS & MORE

Quality

A history of accreditation. For more than 20 years, Inorganic Ventures has been accredited by A2LA to ISO 17034 (formerly ISO Guide 34) & ISO 17025. These are the core standards of the analytical testing community, and Inorganic Ventures continues to lead the way in compliance to these quality standards. This means CRMs that are engineered to be stable, compatible, SI traceable and manufactured and tested under ISO 17034 & ISO 17025 guidelines.

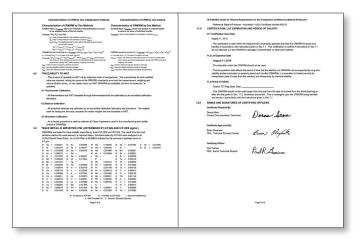
Customs


Custom standards are Inorganic Ventures' specialty. Our catalog reveals only a fraction of the inorganic reference materials we can prepare. More than two thirds of our business is devoted entirely to preparing custom standards. As the leading manufacturer of custom inorganic standards, we've produced tens of thousands of unique blends for laboratories worldwide. It's our area of expertise, and perhaps the most prominent way in which we refine your results and redefine your industry.

And More...

On the web. Our technical library has been expanding for over a decade. Topics include ICP operations, sample preparation, trace metals analysis and much more* There you'll discover the best online tool for analytical chemists with our Interactive Periodic Table. It includes chemical compatibilities, preferred lines, major interferences and additional data for 70+ elements. inorganicventures.com/tech-center

Additionally, our stock SDSs and CoAs can be found on our website for current lots as well as many older ones.


WHY CHOOSE INORGANIC VENTURES?

CERTIFICATE OF ANALYSIS

You'll wonder how you ever got along without such a thorough certificate.

Contact us for a sample.

Certificate of Analysis (CoA)

Nearly every CRM we manufacture includes a highly detailed Certificate of Analysis. As an ISO 17034, A2LA accredited manufacturer, we provide certificates that include extensive data to meet the quality requirements of any laboratory:

- Traceability to specific NIST SRMs and lots
- Certified Values based on two independent methods
- Trace Impurities listed with the actual values
- Uncertainties detailed information reported


ONLINE

All CoA and Safety Data Sheet (SDS) information is now available online, 24/7. Inorganic Ventures is also pleased to announce that all of our products are GHS compliant and our SDSs are available in 13 different languages.

inorganicventures.com/inorganic-standards

Inorganic Ventures Label

TECHNICAL SUPPORT

We're here to help. We don't just manufacture inorganic CRMs, we also provide technical support when it is needed so you can do your job. Because inorganic chemistry is all we do, Inorganic Ventures has a dedicated technical support team that can assist you with hundreds of topics: sample preparation, method development, ICP and ICP-MS measurement issues and much more. You'll be amazed when you talk to a real person with a technical background ready to help you.

Our technical advisors are available to assist you Monday through Friday, 8:00 a.m. to 5:00 p.m. EST.

We can assist you with...

- Sample preparation
- Spectral interferences
- Chemical compatibilities
- Various ICP & ICP-MS measurement issues

Technical Questions Answered

We've posted a variety of technical questions and answers pertaining to sample preparation, chemical stability and measurement.

inorganicventures.com/tech-center

Phone

- 800.669.6799 (US & Canada)
- +1.540.585.3030 (International)

Email

info@inorganicventures.com

Online

inorganicventures.com/forum

OUR GUARANTEE

Unquestionable integrity.

We believe in our products. And we value our customers. That is why every order leaving our facilities includes our "Declaration of Integrity." This document guarantees your satisfaction. Simply said, if you're dissatisfied with your order for any reason and we cannot work through the problem with you, a full refund will be issued, no questions asked.

TRANSPIRATION CONTROL TECHNOLOGY

The cornerstone of the scientific community is accuracy. That's why Inorganic Ventures has always been committed to producing the industry's most exact Certified Reference Materials.

But our control...and the control of every standard manufacturer...ends shortly after a standard is calibrated and packaged. We are improving the way we deliver our quality standards.

What is transpiration?

Transpiration refers to the passage of water vapor through the walls of a container and/or evaporation from the container opening. Transpiration results in an increase in the concentration of the CRM/RM.

What is the solution?

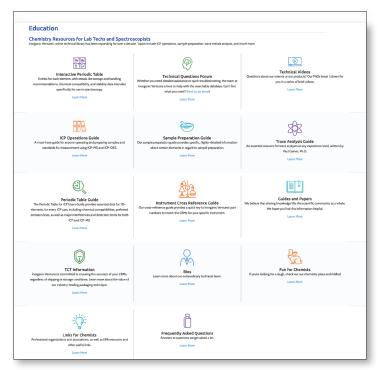
Transpiration Control Technology extends the shelf-life of the product. Inorganic Ventures uses a specially designed aluminized bag that prevents an increase in concentration of the CRM/RM until the TCT bag is opened.

How it works.

The sealed TCT bag stops the loss of water vapor from the bottle when equilibrium is reached inside the bag.

Has the product changed?

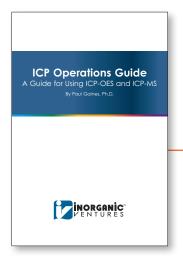
The product has not changed, it is the same high-quality product you have come to depend on from Inorganic Ventures. TCT is an investment we are making to extend shelf life and give you more control at no extra charge. Our products and unconditional guarantee remain the same.


What this means for you.

When you order standards from Inorganic Ventures, your product will be delivered in the TCT bag. This means you will be in control of the expiration date. Upon receiving the product, do not open the TCT bag until you are ready to use. To find out how long the product can be in the TCT bag before it expires, simply check the lot expiration found on the bottom left of the front label. Your product will expire on that date or one year after opening the sealed TCT bag, whichever comes first.

For more information on TCT, visit inorganicventures.com/tct

WHY CHOOSE INORGANIC VENTURES?


ONLINE TECH CENTER

inorganicventures.com/tech-center

Visit us online to see all of our upgraded features.

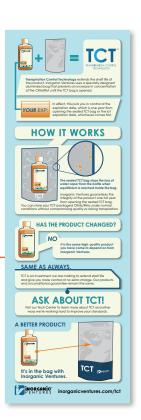
Interactive Periodic Table

Discover the best online tool for analytical chemists. Includes chemical compatibilities, preferred lines, major interferences and additional data for 70+ elements.

Guides and Papers

Inorganic Ventures' online technical library has been expanding for more than a decade. Topics include ICP operations, sample preparation, trace metals analysis and much more.

Transpiration Control Technology


With TCT, concerns about shipping or storage conditions are eliminated, as transpiration is no longer an issue.

Technical Videos

Watch technical videos pertaining to some of the most common questions in our recorded webinars and "Ask a Chemist" video series.

CASE STUDY: PUT OUR PURITY TO THE TEST

CHALLENGE

Inorganic Ventures was contacted by an energy storage manufacturer when concerns arose about acquiring highpurity specialty reagents with custom bulk delivery from a domestic source.

The customer came to us with a request to use our products as components in their elite manufacturing processes. We put our brains together to roll out a distinct custom solution that would support their new endeavors.

The need for impurities below a certain threshold was vital to the customer's operation and guarantee of a

high-quality end product. This project pushed us to innovate and develop new chemical mixtures that were stable, easier to manufacture and higher in concentration while simultaneously maintaining the prescribed purity requirements. It also highlighted our ability to adapt and problem-solve when being challenged by large volume requirements (>1000L per month) and sourcing of rare raw materials. Lastly, the case gave valuable insight into a reality where Inorganic Ventures' products, capabilities and expertise are utilized in a variety of different industries beyond trace elemental analysis and validation of instruments in the analytical testing field.

AREAS OF EXPERTISE

- High-purity technical blending
- Specialized packaging and containers
- Custom reagent mixtures
- · High-purity metals and compounds
- · High-purity salt solutions
- · High-purity DI water and acid solutions
- Custom metal solutions
- · Custom chemical blending
- Certified filters

CASE STUDY: A NEW PATH FOR IV WITH PURE STARTING MATERIALS

CHALLENGE

A long-term partnership between Inorganic Ventures (IV) and one of our most loyal suppliers sparked ideas about a new endeavor with the highest quality starting materials as the focus. Our collaborating supplier is known for offering ultra-pure inorganic metal compounds and with the addition of Inorganic Ventures' years of ISO-accredited testing expertise, we provide even greater value to their products.

Inorganic Ventures rigorously tests the supplier's starting materials for more than 68 elemental impurities using both ICP-OES and ICP-MS. Our Trace Metallic Impurity (TMI) testing program provides certificates detailing purity information and includes identified trace metals and detection limits. For a multitude of companies, it is important to know which trace metals are present and at

what levels when planning for product development or regulatory compliance. The insight this testing provides is also used to make companies aware of quality control issues or factors for improving their methods and processes.

Along with the added TMI testing, Inorganic Ventures hermetically seals the products using our industry-tested Transpiration Control Technology (TCT) to ensure product integrity and provide confidence and consistency when it comes to shipping and storage. Another benefit to this product transformation is the distribution network used by Inorganic Ventures. Our distribution chain stretches all over the world, making it easier for customers to obtain these metals in compounds common to many manufacturing and analytical processes.

PRODUCTS

Aluminum nitrate hexahydrate	99.999%	CAS Number: 7784-27-2
Calcium carbonate	99.9995+%	CAS Number: 471-34-1
Chromium nitrate nonahydrate	99.999%	CAS Number: 7789-02-8
Iron nitrate nonahydrate	99.9995%	CAS Number: 7782-61-8
Magnesium nitrate hexahydrate	99.999%	CAS Number: 13446-18-9

CASE STUDY: THE RESULTS ARE GROWING. THE MICROBES ARE NOT.

CHALLENGE

When a need arose from customers in highly regulated industries, Inorganic Ventures (IV) took the opportunity to deliver a solution that would ease their pain points and make processes more efficient in the lab. The problem? Companies in biomedical, pharmaceutical, life sciences and nutraceutical fields were experiencing issues with microbial growth in their standards. This problem was so severe that in some cases, product bottles were turning green from mold and algae. These companies must comply with strict government regulations — and "bug" growth in the lab definitely does not fall within the scope of those requirements. IV put their brains together to overcome this issue and develop products that would exceed all other offerings on the market.

To combat microbial growth in the past, pharmaceutical and life science companies had been hitting their CRMs with gamma rays before using them in their laboratory methods. This process is known to be expensive, time-consuming and requires unnecessary handling of the product. Gamma ray treatment was increasing costs and wasting time.

IV'S APPROACH

After extensive research and development, Inorganic Ventures unveiled new and improved pH and conductivity standards that would prevent the growth of microbials altogether and eliminate the need for gamma ray treatment. IV's products are ready to use right out of the bottle! IV was able to solve the problem and meet a need which has allowed for efficiency gains in labs all over the world.

Along with bug growth prevention, the pH line provides many other benefits. In response to varying analytical methods and external requests, specifically from companies involved in protein synthesis, Inorganic Ventures made the jump to certify the pH buffers at multiple temperatures.

Another added benefit to Inorganic Ventures' pH standards, as well as all other product offerings, is the unique packaging. All products are stored in the visionary Transpiration Control Technology. This technology provides up to 5-year shelf life, individual bottle expiration dates, expanded storage temperatures outside of normal lab conditions and eliminates contamination from storage with the goal of putting customers in control of their inventory.

All buffers and conductivity standards produced by Inorganic Ventures are manufactured and tested according to ISO 17034 & ISO 17025 guidelines.

PRODUCTS:

Conductivity Standards

- · 2 µmhos/cm Conductivity at 25°C
- 5 µmhos/cm Conductivity at 25°C
- 10 μmhos/cm Conductivity at 25°C
- 84 µmhos/cm Conductivity at 25°C
- 100 µmhos/cm Conductivity at 25°C
- 147 µmhos/cm Conductivity at 25°C
- 500 µmhos/cm Conductivity at 25°C
- 1,000 µmhos/cm Conductivity at 25°C
- 1,200 µmhos/cm Conductivity at 25°C
- 1,400 µmhos/cm Conductivity at 25°C
- 1,413 µmhos/cm Conductivity at 25°C
- 1,430 µmhos/cm Conductivity at 25°C
- 10,000 μmhos/cm Conductivity at 25°C
- 100,000 µmhos/cm Conductivity at 25°C

pH Standards

- pH 1.68 • pH 10
- pH 2
- pH 10 Blue
- pH 3
- pH 10.01
- pH 4
- pH 11
- pH 4 Red
- pH 12 • pH 12.45
- pH 4.01
- pH 12.47
- pH 5 • pH 6
- pH 6.86
- pH 7
- pH 7 Yellow
- pH 8
- pH 9
- pH 9.18

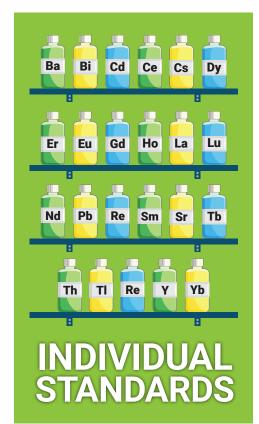
COMMITMENT

At Inorganic Ventures, we want to empower our customers to be leaders, improve efficiencies and meet challenges head on. If your company has specific testing requirements or high-purity specifications, Inorganic Ventures would love to be of service to you. Our team of expert chemists and customer experience representatives looks forward to working with you as a direct partner. Whether this involves process improvement, custom blending, or bulk solution manufacturing, our goal is to offer proven care and support as you refine your results and redefine your industry.

CUSTOM STANDARDS

Refine Your Results. Redefine Your Industry.

Inorganic Ventures' capabilities are not limited to a stock catalog. In fact, manufacturing custom standards is our passion and area of expertise. Let us lead the way as you refine your results and redefine your industry with our precise customizations.


Contents

Magic Happens with a Custom Solution1	5
Benefits of Ordering a Custom	6
Primary Certified Reference Materials1	7
Customs Ordering Process1	8

Custom Standards

- ✓ Made to your exact specifications
- ✓ Save time and money
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ 5-year expiration date with TCT

MAGIC HAPPENS WITH A CUSTOM SOLUTION

Mixing individual, single element standards into a working solution requires time, resources and money.

It involves preparation costs like time intensive labor and equipment, administrative costs associated with stocking and measuring re-order points for each solution, and the responsibility of handling all supporting documentation.

Our expert chemists make magic happen in the lab so that you can put these burdens by the wayside!

Each custom blend is calculated, formulated, articulated and regulated.

All of our custom blends are certified, NIST-traceable and have been put through a rigorous stability and method validation process.

Each custom standard is produced under ISO 9001, ISO 17025 and ISO 17034.

Our custom solutions are manufactured according to your exact specifications and ready for use with no preparation required!

In addition, each custom is guaranteed up to a 5-year shelf, thanks to our Transpiration Control Technology (TCT) which puts you in control of the expiration date!

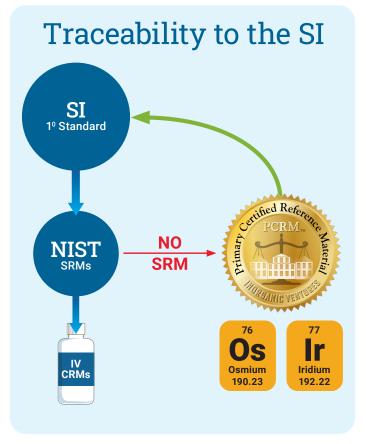
Our Technical Support group is available to facilitate sample preparation and troubleshoot any problems that may arise during testing.

BENEFITS OF ORDERING A CUSTOM

66,000 BLENDS AND COUNTING

Join thousands of laboratories worldwide in purchasing our custom standards. Ditch your single element stocks and let us do the work for you! Not convinced? Check out all the benefits of ordering a custom.

Potential issues building from single element stock products	Comments of the second of the	BENEFITS OF ORDERING A CUSTOM	3
High Preparation Costs	3	Save on labor and equipment costs. Ready for immediate use with no prep required.	
Documentation Responsibilities		All documentation and associated paperwork is handled for you and immediately available if you face an audit.	/
Uncertainty and Instability		Certified, NIST traceable product from experts in elemental compatibility give you peace of mind.	/
Storage and Transpiration Issues	TRANSPIRATION CONTROL TECHNOLOGY	Transpiration Control Technology (TCT) provides up to a 5-year shelf life and allows for flexible storage by increasing allowable temperature range.	✓
Contamination		Take advantage of our clean bottles and starting materials.	✓


Primary Certified Reference Materials

Newly developed Os and Ir PCRM™s from Inorganic Ventures are a step above our normal Certified Reference Materials because they achieve the highest possible levelof metrological traceability.

Osmium and Iridium PCRMs are the only rigorously developed solution standards traceable to the International System of Units (SI) for these elements. They can be used with the same degree of confidence as solution standards from National Metrology Institutes (NMIs).

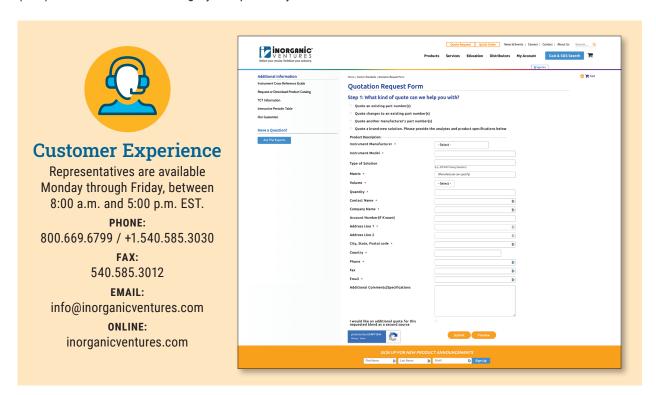
Scan to download the whitepaper to learn more about tracebility.

THE CUSTOMS ORDERING PROCESS

How do I request a custom CRM?

Custom solutions can be requested through our convenient online quotation form. If you are unable to use our website, you may submit custom quotes through email, fax or by phone. All we need from you is a previously quoted IV part number, another manufacturer's part number, or for a brand new solution, the desired analytes, concentrations and matrix requirements.

https://www.inorganicventures.com/quote/instrumentsetup/index


What happens after I submit my request?

Your custom quote is put together by our experienced chemists.

First, they go through our extensive library of more than 66,000 blends that have been developed over the last 38 years. If they don't find a match, they start formulating your exact custom standard. During this process, the blend is reviewed for stability and chemical compatibility. Your quote will be processed within two business days!*

I received the quote and I'm ready to order my custom!

If you like what you see, place your order via phone, fax or email. Your standard will be manufactured, packaged, and shipped within 10 business days. The custom standard is protected by our Transpiration Control Technology (TCT) and retains scientific integrity for up to five years from the date of manufacture.**

- * Quotes with many solutions, complex blends, or unique requirements may take longer to process.
- ** Based on stability data, some blends may receive a shorter lot expiration date.

ICP-OES & ICP-MS

Whether you use ICP or ICP-MS, we offer a wide selection of Certified Reference Materials. At your request, we've expanded our line with new instrument setup standards. And we'll continue to improve our selection based on your feedback.

Contents

Single-Element Standards	20
Cyanide Standards	35
Multi-Element Standards	35
Instrument Cross-Reference Table	35
Multi-Element Standards	38
High-Purity Ionization Buffers	
USP Standards	53
Cannibis Standards	55
Need a Custom CRM?	18

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ Assayed by validated wet chemical procedures
- ✓ Assayed by validated ICP-OES procedures
- ✓ Trace metallic impurities determined by ICP and ICP-MS

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Aluminum, Al	HNO ₃	125 mL	MSAL-10PPM-125ML
Antimony, Sb	HNO ₃ / Tartaric Acid	125 mL	MSSB-10PPM-125ML
Arsenic, As	HNO_3	125 mL	MSAS-10PPM-125ML
Barium, Ba	HNO ₃	125 mL	MSBA-10PPM-125ML
Beryllium, Be	$HNO_{\scriptscriptstyle 3}$	125 mL	MSBE-10PPM-125ML
Bismuth, Bi	HNO ₃	125 mL	MSBI-10PPM-125ML
Boron, B	HNO_3	125 mL	MSB-10PPM-125ML
¹⁰ Boron, ¹⁰ B	HNO ₃	100 mL*	MS10B-10PPM-100ML
¹¹ Boron, ¹¹ B	HNO_3	100 mL*	MS11B-10PPM-100ML
Cadmium, Cd	HNO ₃	125 mL	MSCD-10PPM-125ML
Calcium, Ca	HNO ₃	125 mL 500 mL	MSCA-10PPM-125ML MSCA-10PPM-500ML
Cerium, Ce	HNO ₃	125 mL	MSCE-10PPM-125ML
Cesium, Cs	HNO_3	125 mL	MSCS-10PPM-125ML
Chromium ⁺³ , Cr ⁺³	HNO ₃	125 mL	MSCR(3)-10PPM-125ML
Chromium⁺6, Cr⁺6	H_2O	125 mL	MSCR(6)-10PPM-125ML
Cobalt, Co	HNO ₃	125 mL	MSCO-10PPM-125ML
Copper, Cu	HNO_3	125 mL	MSCU-10PPM-125ML
Germanium, Ge	HNO ₃ / HF	125 mL	MSGE-10PPM-125ML
Gold, Au	HCI	125 mL 500 mL	MSAU-10PPM-125ML MSAU-10PPM-500ML
Hafnium, Hf	HNO ₃ / HF	125 mL 500 mL	MSHF-10PPM-125ML MSHF-10PPM-500ML
Holmium, Ho	$HNO_{\scriptscriptstyle 3}$	125 mL	MSHO-10PPM-125ML
Indium, In	HNO ₃	125 mL	MSIN-10PPM-125ML
Iron, Fe	HNO ₃	125 mL	MSFE-10PPM-125ML
Lead, Pb	HNO ₃	125 mL	MSPB-10PPM-125ML
Lithium, Li	HNO ₃	125 mL	MSLI-10PPM-125ML
⁶ Lithium, ⁶ Li	HNO ₃	125 mL	MS6LI-10PPM-125ML
Magnesium, Mg	HNO ₃	125 mL 500 mL	MSMG-10PPM-125ML MSMG-10PPM-500ML
Manganese, Mn	HNO ₃	125 mL 500 mL	MSMN-10PPM-125ML MSMN-10PPM-500ML

^{*}Note: Size is 100 mL not 125 mL.

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Mercury, Hg	HCI	125 mL 500 mL	MSHG-10PPM-125ML MSHG-10PPM-500ML
Mercury, Hg	HNO ₃	125 mL 500 mL	MSHGN-10PPM-125ML MSHGN-10PPM-500ML
Molybdenum, Mo	NH ₄ OH	125 mL	MSMO-10PPM-125ML
Nickel, Ni	HNO ₃	125 mL	MSNI-10PPM-125ML
Osmium, Os	HCI	125 mL	MSOS-10PPM-125ML
Phosphorus, P	H ₂ O	125 mL	MSP-10PPM-125ML
Platinum, Pt	HCI	125 mL	MSPT-10PPM-125ML
Potassium, K	HNO ₃	125 mL	MSK-10PPM-125ML
Rhodium, Rh	HCI	125 mL	MSRH-10PPM-125ML
Rhodium, Rh	HNO ₃	125 mL	MSRHN-10PPM-125ML
Scandium, Sc	HNO ₃	125 mL	MSSC-10PPM-125ML
Selenium, Se	HNO ₃	125 mL	MSSE-10PPM-125ML
Silicon, Si	HNO ₃ / HF	125 mL	MSSI-10PPM-125ML
Silver, Ag	HNO ₃	125 mL	MSAG-10PPM-125ML
Sodium, Na	HNO ₃	125 mL 500 mL	MSNA-10PPM-125ML MSNA-10PPM-500ML
Strontium, Sr	HNO ₃	125 mL	MSSR-10PPM-125ML
Sulfur, S	H_2^0	125 mL	MSS-10PPM-125ML
Tellurium, Te	HNO ₃	125 mL	MSTEN-10PPM-125ML
Terbium, Tb	HNO ₃	125 mL	MSTB-10PPM-125ML
Thallium, Tl	HNO ₃	125 mL	MSTL-10PPM-125ML
Thorium, Th	HNO ₃	125 mL	MSTH-10PPM-125ML
Tin, Sn	HNO ₃ / HF	125 mL 500 mL	MSSN-10PPM-125ML MSSN-10PPM-500ML
Titanium, Ti	HNO ₃ / HF	125 mL	MSTI-10PPM-125ML
Tungsten, W	HNO ₃ / HF	125 mL	MSW-10PPM-125ML
Uranium, U	HNO_3	125 mL 500 mL	MSU-10PPM-125ML MSU-10PPM-500ML
Vanadium, V	HNO ₃	125 mL	MSV-10PPM-125ML
Yttrium, Y	HNO ₃	125 mL	MSY-10PPM-125ML
Zinc, Zn	HNO ₃	125 mL 500 mL	MSZN-10PPM-125ML MSZN-10PPM-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

nabic apon request. I	veca a marticiement solution: v	ve can do that too:	100 μg/11
ANALYTE	MATRIX	VOLUME	CATALOG #
Aluminum, Al	HNO ₃	125 mL 500 mL	MSAL-100PPM-125ML MSAL-100PPM-500ML
Antimony, Sb	HNO ₃ / Tartaric Acid	125 mL	MSSB-100PPM-125ML
Arsenic, As	HNO ₃	125 mL	MSAS-100PPM-125ML
Barium, Ba	HNO ₃	125 mL	MSBA-100PPM-125ML
Beryllium, Be	HNO ₃	125 mL	MSBE-100PPM-125ML
Bismuth, Bi	HNO ₃	125 mL	MSBI-100PPM-125ML
Boron, B	HNO ₃	125 mL	MSB-100PPM-125ML
Cadmium, Cd	HNO ₃	125 mL	MSCD-100PPM-125ML
Calcium, Ca	HNO ₃	125 mL 500 mL	MSCA-100PPM-125ML MSCA-100PPM-500ML
Cerium, Ce	HNO ₃	125 mL	MSCE-100PPM-125ML
Cesium, Cs	HNO ₃	125 mL	MSCS-100PPM-125ML
Chromium ⁺³ , Cr ⁺³	HNO ₃	125 mL	MSCR(3)-100PPM-125ML
Chromium ⁺⁶ , Cr ⁺⁶	$H_2^{}$ 0	125 mL	MSCR(6)-100PPM-125ML
Cobalt, Co	HNO ₃	125 mL	MSCO-100PPM-125ML
Copper, Cu	HNO ₃	125 mL	MSCU-100PPM-125ML
Germanium, Ge	HNO ₃ / HF	125 mL	MSGE-100PPM-125ML
Gold, Au	HCI	125 mL 500 mL	MSAU-100PPM-125ML MSAU-100PPM-500ML
Hafnium, Hf	HNO ₃ / HF	125 mL 500 mL	MSHF-100PPM-125ML MSHF-100PPM-500ML
Holmium, Ho	HNO ₃	125 mL	MSHO-100PPM-125ML
Indium, In	HNO ₃	125 mL	MSIN-100PPM-125ML
Iron, Fe	HNO ₃	125 mL 500 mL	MSFE-100PPM-125ML MSFE-100PPM-500ML
Lead, Pb	HNO ₃	125 mL 500 mL	MSPB-100PPM-125ML MSPB-100PPM-500ML
Lithium, Li	HNO ₃	125 mL 500 mL	MSLI-100PPM-125ML MSLI-100PPM-500ML
⁶ Lithium, ⁶ Li	HNO ₃	125 mL	MS6LI-100PPM-125ML
Magnesium, Mg	HNO ₃	125 mL 500 mL	MSMG-100PPM-125ML MSMG-100PPM-500ML
Manganese, Mn	HNO ₃	125 mL	MSMN-100PPM-125ML
Mercury, Hg	HCI	125 mL	MSHG-100PPM-125ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Mercury, Hg	HNO ₃	125 mL	MSHGN-100PPM-125ML
Molybdenum, Mo	NH ₄ OH	125 mL	MSMO-100PPM-125ML
Nickel, Ni	HNO ₃	125 mL	MSNI-100PPM-125ML
Osmium, Os	HCI	125 mL	MSOS-100PPM-125ML
Phosphorus, P	H ₂ 0	125 mL 500 mL	MSP-100PPM-125ML MSP-100PPM-500ML
Platinum, Pt	HCI	125 mL	MSPT-100PPM-125ML
Potassium, K	HNO ₃	125 mL 500 mL	MSK-100PPM-125ML MSK-100PPM-500ML
Rhodium, Rh	HCI	125 mL	MSRH-100PPM-125ML
Rhodium, Rh	HNO ₃	125 mL	MSRHN-100PPM-125ML
Scandium, Sc	HNO ₃	125 mL 500 mL	MSSC-100PPM-125ML MSSC-100PPM-500ML
Selenium, Se	HNO ₃	125 mL	MSSE-100PPM-125ML
Silicon, Si	HNO ₃ / HF	125 mL 500 mL	MSSI-100PPM-125ML MSSI-100PPM-500ML
Silver, Ag	HNO ₃	125 mL 500 mL	MSAG-100PPM-125ML MSAG-100PPM-500ML
Sodium, Na	HNO ₃	125 mL 500 mL	MSNA-100PPM-125ML MSNA-100PPM-500ML
Strontium, Sr	HNO ₃	125 mL	MSSR-100PPM-125ML
Sulfur, S	H ₂ O	125 mL	MSS-100PPM-125ML
Tellurium, Te	HNO ₃	125 mL	MSTEN-100PPM-125ML
Terbium, Tb	HNO ₃	125 mL	MSTB-100PPM-125ML
Thallium, Tl	HNO ₃	125 mL	MSTL-100PPM-125ML
Thorium, Th	HNO ₃	125 mL	MSTH-100PPM-125ML
Tin, Sn	HNO ₃ / HF	125 mL	MSSN-100PPM-125ML
Titanium, Ti	HNO ₃ / HF	125 mL	MSTI-100PPM-125ML
Tungsten, W	HNO ₃ / HF	125 mL 500 mL	MSW-100PPM-125ML MSW-100PPM-500ML
Uranium, U	HNO ₃	125 mL 500 mL	MSU-100PPM-125ML MSU-100PPM-500ML
Vanadium, V	HNO ₃	125 mL	MSV-100PPM-125ML
Yttrium, Y	HNO ₃	125 mL 500 mL	MSY-100PPM-125ML MSY-100PPM-500ML
Zinc, Zn	HNO ₃	125 mL 500 mL	MSZN-100PPM-125ML MSZN-100PPM-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Aluminum, Al	HNO ₃	30 mL 125 mL 500 mL	CGAL1-30ML CGAL1-125ML CGAL1-500ML
Aluminum, Al	HCI	30 mL 125 mL 500 mL	CGALCL1-30ML CGALCL1-125ML CGALCL1-500ML
Antimony, Sb	HNO ₃ / Tartaric Acid	125 mL	CGSB1-125ML
Antimony, Sb	HNO ₃ / HF	125 mL	CGSBF1-125ML
Arsenic, As	HNO ₃	30 mL 125 mL 500 mL	CGAS1-30ML CGAS1-125ML CGAS1-500ML
Arsenic ⁺³ , As ⁺³	HCI / NaOH / NaHCO ₃	30 mL 125 mL 500 mL	CGAS(3)1-30ML CGAS(3)1-125ML CGAS(3)1-500ML
Arsenic ⁺⁵ , As ⁺⁵	H ₂ 0	30 mL 125 mL 500 mL	CGAS(5)1-30ML CGAS(5)1-125ML CGAS(5)1-500ML
Barium, Ba	HNO ₃	30 mL 125 mL 500 mL	CGBA1-30ML CGBA1-125ML CGBA1-500ML
Beryllium, Be	HNO ₃	30 mL 125 mL 500 mL	CGBE1-30ML CGBE1-125ML CGBE1-500ML
Bismuth, Bi Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGBI1-30ML CGBI1-125ML CGBI1-500ML
Boron, B	NH ₄ OH	30 mL 125 mL 500 mL	CGB1-30ML CGB1-125ML CGB1-500ML
Bromide, Br - Suitable for analyzing Bromide by ICP-0ES.	H ₂ O	30 mL 125 mL 500 mL	CGICBR1-30ML CGICBR1-125ML CGICBR1-500ML
Cadmium, Cd	HNO ₃	30 mL 125 mL 500 mL	CGCD1-30ML CGCD1-125ML CGCD1-500ML
Calcium, Ca	HNO ₃	30 mL 125 mL 500 mL	CGCA1-30ML CGCA1-125ML CGCA1-500ML
Carbon, C	HNO ₃	125 mL 500 mL	CGC1-125ML CGC1-500ML
Carbon, C Suitable for TOC applications per Standard Methods.	H ₂ 0	125 mL 500 mL	TOCKHP1-125ML TOCKHP1-500ML
Cerium, Ce	HNO ₃	30 mL 125 mL 500 mL	CGCE1-30ML CGCE1-125ML CGCE1-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Cesium, Cs	HNO ₃	30 mL 125 mL	CGCS1-30ML CGCS1-125ML
Chloride, Cl ⁻ Suitable for analyzing Chloride by ICP-OES.	H ₂ 0	125 mL 500 mL	CGICCL1-125ML CGICCL1-500ML
Chromium ⁺³ , Cr ⁺³	HNO ₃	30 mL 125 mL 500 mL	CGCR(3)1-30ML CGCR(3)1-125ML CGCR(3)1-500ML
Chromium*6, Cr*6	H ₂ O	30 mL 125 mL 500 mL	CGCR(6)1-30ML CGCR(6)1-125ML CGCR(6)1-500ML
Cobalt, Co	HNO ₃	30 mL 125 mL 500 mL	CGC01-30ML CGC01-125ML CGC01-500ML
Copper, Cu	HNO ₃	30 mL 125 mL 500 mL	CGCU1-30ML CGCU1-125ML CGCU1-500ML
Dysprosium, Dy	HNO ₃	30 mL 125 mL 500 mL	CGDY1-30ML CGDY1-125ML CGDY1-500ML
Erbium, Er	HNO ₃	30 mL 125 mL 500 mL	CGER1-30ML CGER1-125ML CGER1-500ML
Europium, Eu	HNO ₃	30 mL 125 mL 500 mL	CGEU1-30ML CGEU1-125ML CGEU1-500ML
Gadolinium, Gd	HNO ₃	30 mL 125 mL 500 mL	CGGD1-30ML CGGD1-125ML CGGD1-500ML
Gallium, Ga	HNO ₃	30 mL 125 mL 500 mL	CGGA1-30ML CGGA1-125ML CGGA1-500ML
Germanium, Ge	HNO ₃ / HF	30 mL 125 mL 500 mL	CGGE1-30ML CGGE1-125ML CGGE1-500ML
Gold, Au Can also be used to stabalize low-level Hg for ICP-MS analysis.	HCI	30 mL 125 mL 500 mL	CGAU1-30ML CGAU1-125ML CGAU1-500ML
Gold, Au	HNO ₃	30 mL 125 mL 500 mL	CGAUN1-30ML CGAUN1-125ML CGAUN1-500ML
Hafnium, Hf	HNO ₃ / HF	30 mL 125 mL 500 mL	CGHF1-30ML CGHF1-125ML CGHF1-500ML
Holmium, Ho Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGH01-30ML CGH01-125ML CGH01-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Indium, In Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGIN1-30ML CGIN1-125ML CGIN1-500ML
lodide, I- Suitable for analyzing lodide by ICP-OES.	H ₂ O / TEA	30 mL 125 mL 500 mL	CGICI1-30ML CGICI1-125ML CGICI1-500ML
Iridium, Ir	HCI	30 mL 125 mL 500 mL	CGIR1-30ML CGIR1-125ML CGIR1-500ML
Iron, Fe	HNO ₃	30 mL 125 mL 500 mL	CGFE1-30ML CGFE1-125ML CGFE1-500ML
Lanthanum, La	HNO ₃	30 mL 125 mL 500 mL	CGLA1-30ML CGLA1-125ML CGLA1-500ML
Lead, Pb	HNO ₃	30 mL 125 mL 500 mL	CGPB1-30ML CGPB1-125ML CGPB1-500ML
Lithium, Li	HNO ₃	30 mL 125 mL 500 mL	CGLI1-30ML CGLI1-125ML CGLI1-500ML
6Lithium, 6Li Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL	CG6LI1-30ML CG6LI1-125ML
Lutetium, Lu	HNO ₃	30 mL 125 mL 500 mL	CGLU1-30ML CGLU1-125ML CGLU1-500ML
Magnesium, Mg	HNO ₃	30 mL 125 mL 500 mL	CGMG1-30ML CGMG1-125ML CGMG1-500ML
Manganese, Mn	HNO ₃	30 mL 125 mL 500 mL	CGMN1-30ML CGMN1-125ML CGMN1-500ML
Mercury, Hg	HNO ₃	30 mL 125 mL 500 mL	CGHG1-30ML CGHG1-125ML CGHG1-500ML
Molybdenum, Mo	NH₄OH	30 mL 125 mL 500 mL	CGM01-30ML CGM01-125ML CGM01-500ML
Neodymium, Nd	HNO ₃	30 mL 125 mL 500 mL	CGND1-30ML CGND1-125ML CGND1-500ML
Nickel, Ni	HNO ₃	30 mL 125 mL 500 mL	CGNI1-30ML CGNI1-125ML CGNI1-500ML
Niobium, Nb	HNO ₃ / HF	30 mL 125 mL 500 mL	CGNB1-30ML CGNB1-125ML CGNB1-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Niobium, Nb High purity, low Tantalum	HNO ₃ / HF	125 mL 500 mL	CGNB2051-125ML CGNB2051-500ML
Osmium, Os	HCI	30 mL 125 mL 500 mL	CGOS1-30ML CGOS1-125ML CGOS1-500ML
Palladium, Pd	HCI	30 mL 125 mL 500 mL	CGPD1-30ML CGPD1-125ML CGPD1-500ML
Palladium, Pd	HNO ₃	30 mL 125 mL 500 mL	CGPDN1-30ML CGPDN1-125ML CGPDN1-500ML
Phosphorus, P	H ₂ 0	30 mL 125 mL 500 mL	CGP1-30ML CGP1-125ML CGP1-500ML
Platinum, Pt Contains Chloride	HNO ₃	30 mL 125 mL 500 mL	CGPTN1-30ML CGPTN1-125ML CGPTN1-500ML
Platinum, Pt	HCI	30 mL 125 mL 500 mL	CGPT1-30ML CGPT1-125ML CGPT1-500ML
Platinum, Pt Chloride Free	HNO ₃	30 mL 125 mL 500 mL	CGPTN031-30ML CGPTN031-125ML CGPTN031-500ML
Potassium, K	HNO ₃	30 mL 125 mL 500 mL	CGK1-30ML CGK1-125ML CGK1-500ML
Praseodymium, Pr	HNO ₃	30 mL 125 mL 500 mL	CGPR1-30ML CGPR1-125ML CGPR1-500ML
Rhenium, Re	HNO ₃	30 mL 125 mL 500 mL	CGRE1-30ML CGRE1-125ML CGRE1-500ML
Rhodium, Rh Commonly used as an Internal Standard for ICP-MS.	HCI	30 mL 125 mL 500 mL	CGRH1-30ML CGRH1-125ML CGRH1-500ML
Rhodium, Rh Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGRHN1-30ML CGRHN1-125ML CGRHN1-500ML
Rubidium, Rb	HNO ₃	30 mL 125 mL	CGRB1-30ML CGRB1-125ML
Ruthenium, Ru	нсі	30 mL 125 mL 500 mL	CGRU1-30ML CGRU1-125ML CGRU1-500ML
Samarium, Sm	HNO ₃	30 mL 125 mL 500 mL	CGSM1-30ML CGSM1-125ML CGSM1-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG#
Scandium, Sc Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGSC1-30ML CGSC1-125ML CGSC1-500ML
Selenium ⁺⁴ , Se ⁺⁴	HNO_3	30 mL 125 mL 500 mL	CGSE(4)1-30ML CGSE(4)1-125ML CGSE(4)1-500ML
Selenium ⁺⁶ , Se ⁺⁶	H ₂ 0	30 mL 125 mL	CGSE(6)1-30ML CGSE(6)1-125ML
Silica, SiO ₂	HNO ₃ / HF	30 mL 125 mL 500 mL	CGSIO1-30ML CGSIO1-125ML CGSIO1-500ML
Silica, SiO ₂	NaOH	125 mL 500 mL	CGSIONA1-125ML CGSIONA1-500ML
Silicon, Si	HNO ₃ / HF	30 mL 125 mL 500 mL	CGSI1-30ML CGSI1-125ML CGSI1-500ML
Silicon, Si	NaOH	125 mL 500 mL	CGSINA1-125ML CGSINA1-500ML
Silver, Ag	HNO_3	30 mL 125 mL 500 mL	CGAG1-30ML CGAG1-125ML CGAG1-500ML
Sodium, Na	HNO ₃	30 mL 125 mL 500 mL	CGNA1-30ML CGNA1-125ML CGNA1-500ML
Strontium, Sr	HNO_3	30 mL 125 mL 500 mL	CGSR1-30ML CGSR1-125ML CGSR1-500ML
Sulfur, S Compatible if mixed with Ba and Pb.	H ₂ 0	125 mL 500 mL	CGMSA1-125ML CGMSA1-500ML
Sulfur, S	H ₂ 0	30 mL 125 mL 500 mL	CGS1-30ML CGS1-125ML CGS1-500ML
Tantalum, Ta	HNO ₃ / HF	30 mL 125 mL 500 mL	CGTA1-30ML CGTA1-125ML CGTA1-500ML
Tellurium, Te	HCI	30 mL 125 mL 500 mL	CGTE1-30ML CGTE1-125ML CGTE1-500ML
Tellurium, Te	HNO ₃	30 mL 125 mL 500 mL	CGTEN1-30ML CGTEN1-125ML CGTEN1-500ML
Terbium, Tb Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGTB1-30ML CGTB1-125ML CGTB1-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

1,000 µg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Thallium, Tl	HNO ₃	30 mL 125 mL 500 mL	CGTL1-30ML CGTL1-125ML CGTL1-500ML
Thorium, Th	HNO ₃	30 mL 125 mL 500 mL	CGTH1-30ML CGTH1-125ML CGTH1-500ML
Thulium, Tm	HNO ₃	30 mL 125 mL 500 mL	CGTM1-30ML CGTM1-125ML CGTM1-500ML
Tin, Sn	HCI	30 mL 125 mL	CGSNCL1-30ML CGSNCL1-125ML
Tin, Sn	HNO ₃ / HF	30 mL 125 mL 500 mL	CGSN1-30ML CGSN1-125ML CGSN1-500ML
Titanium, Ti	HNO ₃ / HF	30 mL 125 mL 500 mL	CGTI1-30ML CGTI1-125ML CGTI1-500ML
Tungsten, W	HNO ₃ / HF	30 mL 125 mL 500 mL	CGW1-30ML CGW1-125ML CGW1-500ML
Tungsten, W	H ₂ 0	125 mL	CGWH201-125ML
Uranium, U	HNO ₃	30 mL 125 mL 500 mL	CGU1-30ML CGU1-125ML CGU1-500ML
Vanadium, V	HNO ₃	30 mL 125 mL 500 mL	CGV1-30ML CGV1-125ML CGV1-500ML
Ytterbium, Yb	HNO ₃	30 mL 125 mL 500 mL	CGYB1-30ML CGYB1-125ML CGYB1-500ML
Yttrium, Y Commonly used as an Internal Standard for ICP-MS.	HNO ₃	30 mL 125 mL 500 mL	CGY1-30ML CGY1-125ML CGY1-500ML
Zinc, Zn	HNO_3	30 mL 125 mL 500 mL	CGZN1-30ML CGZN1-125ML CGZN1-500ML
Zirconium, Zr	HF	30 mL 125 mL 500 mL	CGZR1-30ML CGZR1-125ML CGZR1-500ML

See pg. 34 for our HF-free Zirconium, part number CGZRCL10-125ML or CGZRCL10-500ML.

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

·			, 13
ANALYTE	MATRIX	VOLUME	CATALOG #
Aluminum, Al	HNO ₃	30 mL 125 mL 500 mL	CGAL10-30ML CGAL10-125ML CGAL10-500ML
Antimony, Sb	HNO ₃ / Tartaric Acid	125 mL 500 mL	CGSB10-125ML CGSB10-500ML
Arsenic, As	HNO ₃	30 mL 125 mL 500 mL	CGAS10-30ML CGAS10-125ML CGAS10-500ML
Barium, Ba	HNO ₃	125 mL 500 mL	CGBA10-125ML CGBA10-500ML
Beryllium, Be	HNO ₃	125 mL 500 mL	CGBE10-125ML CGBE10-500ML
Bismuth, Bi	HNO ₃	30 mL 125 mL 500 mL	CGBI10-30ML CGBI10-125ML CGBI10-500ML
Boron, B	NH_4OH	125 mL 500 mL	CGB10-125ML CGB10-500ML
Cadmium, Cd	HNO ₃	125 mL 500 mL	CGCD10-125ML CGCD10-500ML
Calcium, Ca	HNO ₃	30 mL 125 mL 500 mL	CGCA10-30ML CGCA10-125ML CGCA10-500ML
Carbon, C	HNO ₃	125 mL	CGC10-125ML
Cerium, Ce	HNO ₃	30 mL 125 mL 500 mL	CGCE10-30ML CGCE10-125ML CGCE10-500ML
Cesium, Cs	HNO ₃	125 mL 500 mL	CGCS10-125ML CGCS10-500ML
Chromium*3, Cr*3	HNO_3	30 mL 125 mL 500 mL	CGCR(3)10-30ML CGCR(3)10-125ML CGCR(3)10-500ML
Cobalt, Co Commonly used as an Internal Standard for ICP-OES.	HNO ₃	30 mL 125 mL 500 mL	CGCO10-30ML CGCO10-125ML CGCO10-500ML
Copper, Cu	HNO ₃	30 mL 125 mL 500 mL	CGCU10-30ML CGCU10-125ML CGCU10-500ML
Dysprosium, Dy	HNO ₃	30 mL 125 mL 500 mL	CGDY10-30ML CGDY10-125ML CGDY10-500ML
Erbium, Er	HNO_3	30 mL 125 mL 500 mL	CGER10-30ML CGER10-125ML CGER10-500ML
Europium, Eu	HNO ₃	30 mL 125 mL 500 mL	CGEU10-30ML CGEU10-125ML CGEU10-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Gadolinium, Gd	HNO ₃	30 mL 125 mL 500 mL	CGGD10-30ML CGGD10-125ML CGGD10-500ML
Gallium, Ga	HNO ₃	125 mL 500 mL	CGGA10-125ML CGGA10-500ML
Germanium, Ge	HNO ₃ / HF	125 mL 500 mL	CGGE10-125ML CGGE10-500ML
Gold, Au	HCI	30 mL 125 mL 500 mL	CGAU10-30ML CGAU10-125ML CGAU10-500ML
Hafnium, Hf	HNO ₃ / HF	125 mL 500 mL	CGHF10-125ML CGHF10-500ML
Holmium, Ho	HNO ₃	30 mL 125 mL 500 mL	CGH010-30ML CGH010-125ML CGH010-500ML
Indium, In Commonly used as an Internal Standard for ICP-OES.	HNO ₃	125 mL 500 mL	CGIN10-125ML CGIN10-500ML
Iridium, Ir	HCI	30 mL 125 mL 500 mL	CGIR10-30ML CGIR10-125ML CGIR10-500ML
Iron, Fe	HNO ₃	30 mL 125 mL 500 mL	CGFE10-30ML CGFE10-125ML CGFE10-500ML
Lanthanum, La	HNO ₃	30 mL 125 mL 500 mL	CGLA10-30ML CGLA10-125ML CGLA10-500ML
Lead, Pb	HNO_3	30 mL 125 mL 500 mL	CGPB10-30ML CGPB10-125ML CGPB10-500ML
Lithium, Li	HNO ₃	30 mL 125 mL 500 mL	CGLI10-30ML CGLI10-125ML CGLI10-500ML
Lutetium, Lu	HNO ₃	30 mL 125 mL 500 mL	CGLU10-30ML CGLU10-125ML CGLU10-500ML
Magnesium, Mg	HNO ₃	30 mL 125 mL 500 mL	CGMG10-30ML CGMG10-125ML CGMG10-500ML
Manganese, Mn	HNO ₃	30 mL 125 mL 500 mL	CGMN10-30ML CGMN10-125ML CGMN10-500ML
Mercury, Hg	HNO ₃	125 mL 500 mL	CGHG10-125ML CGHG10-500ML
Molybdenum, Mo	NH₄OH	30 mL 125 mL 500 mL	CGM010-30ML CGM010-125ML CGM010-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Neodymium, Nd	HNO ₃	30 mL 125 mL	CGND10-30ML CGND10-125ML
	·	500 mL 30 mL	CGND10-500ML CGNI10-30ML
Nickel, Ni	HNO ₃	125 mL 500 mL	CGNI10-125ML CGNI10-500ML
Niobium, Nb	HNO ₃ / HF	125 mL	CGNB10-125ML
Niobium, Nb High purity, low Tantalum	HNO ₃ / HF	125 mL 500 mL	CGNB20510-125ML CGNB20510-500ML
Palladium, Pd	HCI	30 mL 125 mL 500 mL	CGPD10-30ML CGPD10-125ML CGPD10-500ML
Phosphorus, P	H ₂ 0	30 mL 125 mL 500 mL	CGP10-30ML CGP10-125ML CGP10-500ML
Platinum, Pt	нсі	30 mL 125 mL 500 mL	CGPT10-30ML CGPT10-125ML CGPT10-500ML
Potassium, K	HNO ₃	30 mL 125 mL 500 mL	CGK10-30ML CGK10-125ML CGK10-500ML
Praseodymium, Pr	HNO ₃	30 mL 125 mL 500 mL	CGPR10-30ML CGPR10-125ML CGPR10-500ML
Rhenium, Re	HNO ₃	125 mL 500 mL	CGRE10-125ML CGRE10-500ML
Rhodium, Rh	HCI	30 mL 125 mL 500 mL	CGRH10-30ML CGRH10-125ML CGRH10-500ML
Rubidium, Rb	HNO ₃	125 mL 500 mL	CGRB10-125ML CGRB10-500ML
Ruthenium, Ru	HCI	30 mL 125 mL 500 mL	CGRU10-30ML CGRU10-125ML CGRU10-500ML
Samarium, Sm	HNO ₃	30 mL 125 mL 500 mL	CGSM10-30ML CGSM10-125ML CGSM10-500ML
Scandium, Sc Commonly used as an Internal Standard for ICP-OES.	HNO ₃	30 mL 125 mL 500 mL	CGSC10-30ML CGSC10-125ML CGSC10-500ML
Selenium, Se	HNO ₃	30 mL 125 mL 500 mL	CGSE10-30ML CGSE10-125ML CGSE10-500ML
Silicon, Si	HNO ₃ / HF	30 mL 125 mL 500 mL	CGSI10-30ML CGSI10-125ML CGSI10-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

ANALYTE	MATRIX	VOLUME	CATALOG #
Silver, Ag	HNO ₃	125 mL 500 mL	CGAG10-125ML CGAG10-500ML
Sodium, Na	HNO_3	30 mL 125 mL 500 mL	CGNA10-30ML CGNA10-125ML CGNA10-500ML
Strontium, Sr	HNO ₃	125 mL 500 mL	CGSR10-125ML CGSR10-500ML
Sulfur, S Compatible if mixed with Ba and Pb.	H ₂ O	125 mL 500 mL	CGMSA10-125ML CGMSA10-500ML
Sulfur, S	H ₂ 0	30 mL 125 mL 500 mL	CGS10-30ML CGS10-125ML CGS10-500ML
Tantalum, Ta	HNO ₃ / HF	125 mL	CGTA10-125ML
Tellurium, Te	HCI	125 mL 500 mL	CGTE10-125ML CGTE10-500ML
Terbium, Tb	HNO_3	30 mL 125 mL 500 mL	CGTB10-30ML CGTB10-125ML CGTB10-500ML
Thallium, TI	HNO ₃	125 mL 500 mL	CGTL10-125ML CGTL10-500ML
Thorium, Th	HNO ₃	125 mL	CGTH10-125ML
Thulium, Tm	HNO_3	30 mL 125 mL 500 mL	CGTM10-30ML CGTM10-125ML CGTM10-500ML
Tin, Sn	HNO ₃ / HF	30 mL 125 mL 500 mL	CGSN10-30ML CGSN10-125ML CGSN10-500ML
Titanium, Ti	HNO ₃ / HF	30 mL 125 mL 500 mL	CGTI10-30ML CGTI10-125ML CGTI10-500ML
Tungsten, W	HNO ₃ / HF	125 mL 500 mL	CGW10-125ML CGW10-500ML
Uranium, U	HNO_3	30 mL 125 mL 500 mL	CGU10-30ML CGU10-125ML CGU10-500ML
Vanadium, V	HNO ₃	30 mL 125 mL 500 mL	CGV10-30ML CGV10-125ML CGV10-500ML
Ytterbium, Yb	HNO ₃	30 mL 125 mL 500 mL	CGYB10-30ML CGYB10-125ML CGYB10-500ML
Yttrium, Y Commonly used as an Internal Standard for ICP-OES.	HNO_3	30 mL 125 mL 500 mL	CGY10-30ML CGY10-125ML CGY10-500ML

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Need a specific starting material or matrix? Custom 10 ppm single element solutions available upon request. Need a multielement solution? We can do that too!

10,000 µg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Zinc, Zn	HNO_3	30 mL 125 mL 500 mL	CGZN10-30ML CGZN10-125ML CGZN10-500ML
Zirconium, Zr	HF	30 mL 125 mL 500 mL	CGZR10-30ML CGZR10-125ML CGZR10-500ML
Zirconium, Zr HF free	HCI	125 mL 500 mL	CGZRCL10-125ML CGZRCL10-500ML

Inorganic Ventures' Annual ICP Conference

Calling all ICP users — don't miss our annual ICP Conference held in the fall.

You will hear from Inorganic Ventures' experts on a wide range of topics, including Sample Preparation Basics for ICP, Sample and CRM Stability Considerations, Trace Metals Analysis and much more.

For more information, visit inorganicventures.com/ICP

CYANIDE STANDARDS

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Certificate of Analysis includes lot specific trace metal impurity analysis.

Custom cyanide standards are available upon request.

1,000 μg/mL

ANALYTE	μg/mL	MATRIX	VOLUME	CATALOG #
Copper, Cu	1,000	NaCN	125 mL 500 mL	AACUCN-125ML AACUCN-500ML
Gold, Au	1,000	NaCN	125 mL 500 mL	AAAUCN-125ML AAAUCN-500ML
Silver, Ag	1,000	NaCN	125 mL 500 mL	AAAGCN-125ML AAAGCN-500ML
Zinc, Zn	1,000	NaCN	125 mL 500 mL	AAZNCN-125ML AAZNCN-500ML

Inorganic Ventures is not affiliated with the companies and brands referenced on the following pages (other than Inorganic Ventures), and their names and marks are owned by the respective company and/or brand. The names appear solely for the purpose of permitting cross-referencing and comparison of products and standards.

Cross-Reference Table Symbols

MULTI-ELEMENT STANDARDS

Products in bold are **near identical** formulations due to small differences in matrix percentages or additional elements.

Agilent/Varian (AV)				
Agilent/Varian#	Inorganic Ventures#	Page		
5183-4681	IV-STOCK-53	p.43		
5183-4688	IV-STOCK-50	p.43		
5184-3566	IV-11304	Custom		
5185-5959	IV-STOCK-74	p.44		
5185-5959	IV-19645	Custom		
5188-6524	IV-STOCK-51	p.43		
5188-6525	IV-STOCK-75	p.44		
5188-6564	AGI-TS-1	p.49		
5190-0465	IV-37576	Custom		
5190-7001	IV-ACID-BLANK	p.108		
5190-8338	MM-MG-10	p.98		
5190-8596	2008TS	p.65, 78		
5190-8599	CLPP-ICS-A	p.60, 64		
5190-9409	IV-STOCK-34	p.42		
5190-9418	IV-12022	Custom		
5190-9423	IV-36669	Custom		
5190-9766	IV-STOCK-65	p.53, 57		
8500-6940	IV-STOCK-27	p.41		
8500-6944	IV-STOCK-26	p.41		
8500-6948	IV-STOCK-28	p.42		
6610030000	IV-STOCK-24	p.41		
6610030100	IV-8628	Custom		
6610030400	VAR-IS-1	p.52		
6610030500	VAR-CAL-1	p.51		
6610030600	VAR-CAL-2	p.51		
6610030700	IV-STOCK-33	p.42		
ICM-240A	WW-IPC-1	p.71		

NIST Multi-Element Standards 🕦			
NIST# Inorganic Page Ventures#			
SRM1643f IV-STOCK-1643 p.49			

HORIBA Jobin Yvon 🕕			
Jobin Yvon# Inorganic Page Ventures#			
JYICP-MIX23	IV-STOCK-4	p.38	
JYICP-MIXMAJ	IV-STOCK-34	p.42	

Merck/MilliporeSigma 🚺			
Merck#	Inorganic Ventures#	Page	
109410	IV-STOCK-23	p.41	
109411	IV-STOCK-24	p.41	
109480	IV-STOCK-13	p.39	
109481	IV-STOCK-14	p.40	
109492	IV-STOCK-8	p.39	
109493	IV-STOCK-10	p.39	
109494	IV-STOCK-9	p.39	
109495	IV-STOCK-17	p.40	
109498	IV-STOCK-21	p.40	
109500	IV-STOCK-18	p.40	
110322	IV-STOCK-7	p.39	
110714	IV-STOCK-5	p.38	

Spectro S			
Spectro#	Inorganic Ventures#	Page	
USA00875	CIROS-OES-TS	p.49	
USA00888	GENESIS-ICAL	p.49	

Thermo Scientific 🕕			
Thermo Scientific#	Inorganic Ventures#	Page	
1323760	THERMO-5A	p.50	
1323770	THERMO-4AREV	p.50	
ZG22950	TUNE F-X-SERIES	p.51	
BRE0009578	IV-45981	Custom	
4301 228 21401	IV-STOCK-31	p.42	

Products in bold are **near identical** formulations due to small differences in matrix percentages or additional elements.

Perkin Elmer 🔑				ner 🔑
Perkin Elmer#	Inorganic Ventures#	Page		Perkin E
N0582152	IV-32705	Custom		N9302
N0681470	IV-STOCK-14	p.40		N9303
N8125032	IV-STOCK-22	p.41		N9303
N8145051	IV-STOCK-77	p.44		N9303
N8145059	IV-18218	Custom		N9303
N9300205	2007ICS-3	p.67		N9303
N9300208	IV-STOCK-54	p.43		N9303
N9300211	IV-STOCK-13	p.39		N9303
N9300218	IV-STOCK-34	p.42		N9303
N9300226	CLPP-1CS-A	p.60, 62, 64		N9303
N9300227	CLPP-ICS-B4	p.62, 64		N9303
N9300231	IV-STOCK-30	p.42	-	N9303
N9300232	IV-STOCK-26	p.41		N9303
N9300234	IV-STOCK-28	p.42		N9303
N0200222	IV-STOCK-21 &	p.40	-	N9307
N9300233	MSHGN-10PPM	p.55		N930
N9300235	IV-STOCK-29	p.42		N9307

IV-21

IV-STOCK-21

IV-14208

p.69, 75

p.40

Custom

Perkin Elmer#	Inorganic Ventures#	Page
N9302946	IV-STOCK-55	p.44
N9303813 N9303814	IV-DI-BLANK	p.108
N9303818	IV-STOCK-35	p.42
N9303821	PE-CHK-1	p.49
N9303827	60201CS-9A	p.81
N9303828	6020ICS-0A	p.83
N9303832	IV-STOCK-53	p.43
N9303833	IV-STOCK-53	p.43
N9303843	PE-TS-1	p.50
N9303941	IV-STOCK-4	p.53
N9303942	IV-STOCK-8	p.39
N9303946	IV-STOCK-13	p.39
N9303949	WW-MSCAL-1	p.76
N9307113	IV-25755	Custom
N9307114	IV-18652	Custom
N9307116	IV-18653	Custom
N9307741	IV-STOCK-6	p.54
N9307805	IV-STOCK-3	p.53
N9307809 N9308571	IV-ACID-BLANK	p.108

Common Multi-Element () Standards		
Inorganic Ventures#	Page	
IV-STOCK-2	p.38	
IV-STOCK-3	p.38	
IV-STOCK-31	p.42	
IV-STOCK-36	p.43	
IV-STOCK-56	p.44	
IV-STOCK-57	p.44	
IV-STOCK-58	p.44	
THM-TS-1	p.50	

N9300281

N9303837 N9301720

N9301721

USP Method <232>		
Inorganic Ventures#	Page	
IV-STOCK-38	p.53	
IV-STOCK-40	p.53	
IV-STOCK-41	p.53	
IV-STOCK-60	p.53	
IV-STOCK-65	p.53	
IV-STOCK-66	p.53	
IV-STOCK-67	p.54	
IV-STOCK-68	p.54	
IV-STOCK-69	p.54	
IV-STOCK-70	p.54	
IV-STOCK-78	p.54	
IV-STOCK-79	p.54	

IONS			
Common Multi-Ion			
Inorganic Ventures# Page			
IC-FAS-1A p.89			
IC-SCS1 p.89			
IV-STOCK-7 p.39, 89			
IV-STOCK-59 p.89			

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

ICP Calibration Standard			
IV-STOCK-	2 ()	Matrix: HNO ₃	
IV-STOCK-			-
Analyte	μg/mL	Analyte	μg/mL
Ca	10,000	Mg	10,000
K	10,000	Na	10,000

ICP Calibration Standard				
IV-STOCK-3		Matrix: HNO ₃		
IV-STOCK-3-125ML IV-STOCK-3-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ca	1,000	Mg	1,000	
K	1,000	Na	1,000	

ICP Calibration Standard			
IV-STOCK-	4 🕦	Matrix: HNO ₃	
IV-STOCK-4-125ML IV-STOCK-4-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	1,000	In	1,000
Al	1,000	K	1,000
В	1,000	Li	1,000
Ва	1,000	Mg	1,000
Bi	1,000	Mn	1,000
Ca	1,000	Na	1,000
Cd	1,000	Ni	1,000
Co	1,000	Pb	1,000
Cr	1,000	Sr	1,000
Cu	1,000	TI	1,000
Fe	1,000	Zn	1,000
Ga	1,000		

	Common Multi-Element Standards
l b	Common Muni-Element Standards

HORIBA Jobin Yvon

Merck/MilliporeSigma

Wavelength Calibration Standard			
IV-STOCK-	5 M	Matrix: HCl / HF	
IV-STOCK-	5-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	20	Mg	1
As	20	Mn	1
В	2	Na	20
Ва	2	Ni	5
Ве	1	P	10
Ca	10	Pb	20
Cd	2	Sc	1
Cr	2	Se	20
Cu	2	Sr	1
Fe	2	Те	20
Hg	5	Ti	2
K	100	Υ	1
Li	2	Zn	2

ICP Calibration Standard			
IV-STOCK-	IV-STOCK-6 Matrix: HNO ₃		c: HNO ₃
IV-STOCK-	IV-STOCK-6-125ML		125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Li	10
Al	10	Mg	10
As	100	Mn	10
В	100	Мо	10
Ba	10	Na	10
Be	100	Ni	10
Bi	10	Pb	10
Ca	1,000	Rb	10
Cd	10	Se	100
Co	10	Sr	10
Cr	10	Te	10
Cu	10	TI	10
Fe	100	U	10
Ga	10	V	10
K	10	Zn	100

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

Cation Calibration Standard				
IV-STOCK-7 M Natrix: HNO ₃			c: HNO ₃	
IV-STOCK-		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte µg/mL		
Ba ⁺²	100	Mn ⁺²	100	
Ca ⁺²	100	Na⁺	100	
K ⁺	100	NH ₄ ⁺	100	
Li*	100	Sr ⁺²	100	
Mg ⁺²	100			

ICP Calibration Standard			
IV-STOCK-8		Matrix: HNO ₃	
IV-STOCK-8-125ML IV-STOCK-8-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	100	K	100
В	100	Li	100
Ba	100	Mg	100
Ве	100	Mn	100
Bi	100	Na	100
Ca	100	Ni	100
Cd	100	Pb	100
Co	100	Se	100
Cr	100	Sr	100
Cu	100	Te	100
Fe	100	TI	100
Ga	100	Zn	100

ICP Calibration Standard – Toxic Elements				
IV-STOCK-	IV-STOCK-9 Matrix: HNO ₃		c: HNO ₃	
IV-STOCK-9-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
As	100	Pb	100	
Ве	100	Se	100	
Cd	100	TI	100	
Ni	100			

Common Multi-Ion Standards

M I	Merck/MilliporeSigma
-----	----------------------

ICP Calibration Standard – Surface Water			
IV-STOCK-10 M		Matrix: HNO ₃	
IV-STOCK-	10-125ML	Volume:	125 mL
Analyte	μg/L*	Analyte	μg/L*
As	50	Mg	15,000
В	100	Mn	30
Ва	50	Мо	100
Ве	20	Na	8,000
Bi	10	Ni	50
Ca	35,000	Pb	25
Cd	20	Se	10
Co	25	Sr	100
Cr	20	TI	10
Cu	20	V	50
Fe	100	Zn	50
K	3,000	*Parts per billi	on

ICP-MS Calibration Standard			
IV-STOCK-12 Matrix: HNO ₃		c: HNO ₃	
IV-STOCK-	12-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ba	10	In	10
Ве	10	Li	10
Bi	10	Ni	10
Ce	10	Pb	10
Co	10	U	10

ICP Calibration Standard – Trace Metals			
IV-STOCK-13		Matrix: HNO ₃	
IV-STOCK-	13-125ML	3-125ML Volume: 125 i	
Analyte	μg/mL	Analyte	μg/mL
Al	500	Fe	100
As	100	Mn	100
Ве	100	Ni	100
Cd	25	Pb	100
Со	100	Se	25
Cr	100	V	250
Cu	100	Zn	100

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

Wavelength Calibration Standard			
IV-STOCK-14 M PE		Matrix: HCl / HNO ₃ / HF	
IV-STOCK-	14-500ML	Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
As	20	Na	20
K	100	Ni	20
La	20	Р	100
Li	20	S	100
Mn	20	Sc	20
Мо	20		

ICP-MS Calibration Standard				
IV-STOCK-15 Matrix: HNO ₃			k: HNO ₃	
IV-STOCK-15-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ca	10	Li	10	
Fe	10	Na	10	
K	10			

ICP Calibration Standard – Alkaline Earth Element			
IV-STOCK-16 Matrix: HNO ₃			c: HNO ₃
IV-STOCK-	V-STOCK-16-125ML Volume: 12		125 mL
Analyte	μg/mL	Analyte	μg/mL
Ba	1,000	Mg	1,000
Ca	1,000	Sr	1,000

ICP Calibration Standard – HCl Soluble Elements			
IV-STOCK-	17 M	Matrix: HCl/HNO ₃ /HF	
IV-STOCK-17-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Hf	100	Та	100
lr	100	Ti	100
Sb	100	Zr	100
Sn	100		

GFAA Calibration Standard			
IV-STOCK-18 M		Matrix: HNO ₃	
IV-STOCK-	18-125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Cu	50
Al	100	Fe	20
As	100	Mn	20
Ba	50	Ni	50
Ве	5	Pb	100
Cd	5	Sb	100
Co	50	Se	100
Cr	20	TI	100

ICP Calibration Standard			
IV-STOCK-21 M		Matrix: HNO ₃	
IV-STOCK-21-125ML IV-STOCK-21-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	10	K	10
Al	10	Li	10
As	10	Mg	10
Ва	10	Mn	10
Ве	10	Na	10
Bi	10	Ni	10
Ca	10	Pb	10
Cd	10	Rb	10
Co	10	Se	10
Cr	10	Sr	10
Cs	10	TI	10
Cu	10	U	10
Fe	10	V	10
Ga	10	Zn	10
In	10		

Merck/MilliporeSigma

PE Perkin Elmer

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

ICP Calibration Standard				
IV-STOCK-22 PE Matrix: HNO ₃			c: HNO ₃	
IV-STOCK-22-125ML		Volume: 125 mL		
Analyte	μg/L*	Analyte	μg/L*	
Cd	200	Pb	200	
Cu	200	Rh	200	
Mg	200	*Parts per billion		

ICP Calibration Standard				
IV-STOCK-	23 M	Matrix: HNO ₃		
IV-STOCK-	23-500ML	Volume: 500 mL		
Analyte	μg/L*	Analyte	μg/L*	
В	1	Lu	1	
Ва	1	Na	1	
Co	1	Rh	1	
Fe	1	Sc	1	
Ga	1	TI	1	
In	1	U	1	
K	1	Υ	1	
Li	1	*Parts per billion		

Tuning Solution			
IV-STOCK-24 (AV) Matrix: HNO ₃			
IV-STOCK-		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	50	Mn	50
As	50	Мо	50
Ba	50	Ni	50
Cd	50	Pb	50
Со	50	Se	50
Cr	50	Sr	50
Cu	50	Zn	50
K	500		

ICP Calibration Standard			
IV-STOCK-26 (AV)		Matrix: HNO ₃	
IV-STOCK-26-125ML		Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ce	10	Pr	10
Dy	10	Sc	10
Er	10	Sm	10
Eu	10	Tb	10
Gd	10	Th	10
Но	10	Tm	10
La	10	Υ	10
Lu	10	Yb	10
Nd	10		

ICP Calibration Standard			
IV-STOCK-	IV-STOCK-27 (AV) Matrix: HNO ₃		c: HNO ₃
IV-STOCK-27-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Li	10
Al	10	Mg	10
As	10	Mn	10
Ва	10	Na	10
Ве	10	Ni	10
Ca	10	Pb	10
Cd	10	Rb	10
Co	10	Se	10
Cr	10	Sr	10
Cs	10	TI	10
Cu	10	U	10
Fe	10	V	10
Ga	10	Zn	10
K	10		

Agilent/Varian

Merck/MilliporeSigma

Perkin Elmer

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

ICP Calibration Standard			
IV-STOCK-	28 AV PE	Matrix: H	ICI / HNO ₃
IV-STOCK-28-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Au	10	Rh	10
Hf	10	Ru	10
lr	10	Sb	10
Pd	10	Sn	10
Pt	10	Te	10

ICP Calibration Standard					
IV-STOCK-	29	Matrix: I	HNO ₃ / HF		
IV-STOCK-29-125ML		Volume:	125 mL		
Analyte	μg/mL	Analyte	μg/mL		
В	10	S	10		
Ge	10	Si	10		
Мо	10	Та	10		
Nb	10	Ti	10		
Р	10	W	10		
Re	10	Zr	10		

ICP Calibration Standard				
IV-STOCK-30		Matrix	c: HNO ₃	
IV-STOCK-	30-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ве	10	Mg	10	
Bi	10	Ni	10	
Ce	10	Pb	10	
Со	10	U	10	
In	10			

A Agilent/Varian

Common Multi-Element Standards

HORIBA Jobin Yvon

Perkin Elmer

ICP Calibration Standard			
IV-STOCK-	31 (Matrix: HNO ₃	
IV-STOCK-	31-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	1	Mg	0.2
Ba	0.2	Mn	1
Ca	0.2	Ni	5
Cu	1	P	10
K	5	Zn	0.2

Calibration Standard – Mix Majors			
IV-STOCK-33		Matrix: HNO ₃	
IV-STOCK-33-125ML IV-STOCK-33-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ca	500	Mg	500
Fe	500	Na	500
K	500		

ICP Calibration Standard			
IV-STOCK-34 PF JY Matrix: HNO ₃			c: HNO ₃
IV-STOCK-		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ca	5,000	Mg	5,000
K	5,000	Na	5,000

ICP Calibration Standard			
IV-STOCK-35 PB Matrix: HNO ₃			
IV-STOCK-	35-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ca	1,000	Mg	1,000
Fe	1,000	Na	1,000
K	1,000		

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

ICP Calibration Standard			
IV-STOCK-36 (C) Matrix: HCI			
IV-STOCK-36-125ML IV-STOCK-36-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Au	100	Pt	100
Pd	100		

Environmental Calibration Standard			
IV-STOCK-50		Matrix: HNO ₃ / HF	
IV-STOCK-	50-125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Mn	10
Al	10	Мо	10
As	10	Na	1000
Ва	10	Ni	10
Ве	10	Pb	10
Ca	1,000	Sb	10
Cd	10	Se	10
Co	10	Th	10
Cr	10	TI	10
Cu	10	U	10
Fe	1,000	V	10
K	1000	Zn	10
Mg	1000		

Internal Standard				
IV-STOCK-53 (AV) PE Matrix: HNO ₃ / HF				
IV-STOCK-	OCK-53-125ML Vol		ne: 125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Bi	10	Sc	10	
Ge	10	Tb	10	
In	10	Υ	10	
⁶ Li	10			

4.3	V۸
WAY.	. T. A.
Va.	U.

Agilent/Varian

Common Multi-Element Standards

PE Perkin Elmer

7500 Series PA Tuning Solution 1 (commonly used with IV-Stock-52)			
IV-STOCK-51 AV		Matrix: HNO ₃	
IV-STOCK-	51-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	5	Mn	5
As	20	Na	5
Ba	5	Ni	10
Ве	20	Pb	10
Bi	5	Sc	5
Cd	20	Sr	5
Co	5	Th	5
Cr	5	TI	5
Cu	5	U	5
In	5	V	5
⁶ Li	5	Υ	2.5
Lu	5	Yb	2.5
Mg	10	Zn	20

7500 Series PA Tuning Solution 2 (commonly used with IV-Stock-51)			
IV-STOCK-52 Matrix: HCI			
IV-STOCK-	52-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ge	10	Ru	10
lr	5	Sb	10
Мо	10	Sn	10
Pd	10	Ti	5

Interference Check Standard			
IV-STOCK-54 PE Matrix: HNO ₃			
IV-STOCK-	54-125ML	. Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	1200	Mg	3000
Ca	6000	Na	1000
Fe	5000		

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

Wavecal Standard				
IV-STOCK-55 PE Matrix: HNO ₃				
IV-STOCK-	55-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ва	1	Li	10	
Ca	1	Mn	10	
K	50	Na	10	
La	10	Sr	10	

ICP Calibration Standard				
IV-STOCK-56			HNO ₃ / HF	
IV-STOCK-	56-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Мо	100	Sn	100	
Sb	100	Ti	100	
Si	100			

ICP Calibration Standard				
IV-STOCK-57 () Matrix: HNO ₃ / HF				
IV-STOCK-57-125ML Vo		Volume:	125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Мо	10	Sn	10	
Sb	10	Ti	10	

ICP Calibration Standard				
IV-STOCK-58			ix: HCl	
IV-STOCK-	58-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Au	100	Pt	100	
lr	100	Re	100	
0s	100	Rh	100	
Pd	100	Ru	100	

ΑV	Agilent/Varian
4	, .g,

Common Multi-Element Standards

	ь	
PEL	Perkin	Elmer

ICP-MS Tuning Solution				
IV-STOCK-74		Matrix	c: HNO ₃	
IV-STOCK-74-500ML		Volume:	500 mL	
Analyte	μg/L*	Analyte	μg/L*	
Ce	1	Mg	1	
Co	1	TI	1	
Li	1	Υ	1	

*Parts per billion

ICP-MS Internal Standard			
IV-STOCK-75		Matrix: HNO ₃ / HF	
IV-STOCK-75-125ML		Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Bi	100	Lu	100
Ge	100	Rh	100
ln	100	Sc	100
⁶ Li	100	Tb	100

ICP-MS Tuning Solution				
IV-STOCK-77		Matrix	c: HNO ₃	
IV-STOCK-77-500ML		Volume:	500 mL	
Analyte	μg/L*	Analyte	μg/L*	
Ве	1	Li	1	
Ce	1	Mg	1	
Fe	1	Pb	1	
In	1	U	1	

*Parts per billion

These elements are grouped for ease of use. Intended for ICP-MS and ICP-OES, they can be used individually or in any combination upon dilution into 1% HNO₃. Custom ICP-MS/OES calibration standards are available upon request.

65-Element Group

Rare Earth ICP-MS Standard			
CMS-1	C	Matrix: HNO ₃	
CMS-1-125	ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ce	10	Pr	10
Dy	10	Sc	10
Er	10	Sm	10
Eu	10	Tb	10
Gd	10	Th	10
Но	10	Tm	10
La	10	U	10
Lu	10	Υ	10
Nd	10	Yb	10

For ICP analysis of all rare earth elements plus $\mbox{\bf U}$ and $\mbox{\bf Th}.$

Precious Metals ICP-MS Standard				
CMS-2		Matr	ix: HCl	
CMS-2-125ML CMS-2-500ML		Volume: Volume:	125 mL 500 mL	
Analyte	μg/mL	Analyte	μg/mL	
Au	10	Re	10	
lr	10	Rh 10		
Pd	10	Ru	10	
Pt	10	Те	10	

For ICP analysis of precious metals plus Re and Te.

Fluoride Soluble ICP-MS Standard			
CMS-3	CMS-3 Matrix: HNO ₃ /HF		HNO ₃ /HF
CMS-3-125	CMS-3-125ML Volume: 125 ml		125 mL
Analyte	μg/mL	Analyte	μg/mL
Ge	10	Та	10
Hf	10	Ti	10
Мо	10	W	10
Nb	10	Zr	10
Sn	10		

For ICP analysis of elements that tolerate or require HF for stability

Hot Plasma ICP-MS Complete Standard			
CMS-4		Matrix: HNO ₃	
CMS-4-125ML CMS-4-500ML		Volume: Volume:	
Analyte	μg/mL	Analyte	μg/mL
As	10	In	10
В	10	Pb	10
Ba	10	Sb	10
Ве	10	Se	10
Bi	10	TI	10
Cd	10	V	10
Ga	10		

For direct use in ICP analysis or as stock concentrate.

Cool Plasma ICP-MS Complete Standard			
CMS-5	C	Matrix	c: HNO ₃
CMS-5-125ML CMS-5-500ML		Volume: Volume:	125 mL 500 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Li	10
Al	10	Mg	10
Ca	10	Mn	10
Co	10	Na	10
Cr	10	Ni	10
Cs	10	Rb	10
Cu	10	Sr	10
Fe	10	Zn	10
K	10		

For direct use in ICP analysis or as stock concentrate.

These elements are grouped for ease of use. Intended for ICP-MS and ICP-OES, they can be used individually or in any combination upon dilution into 1% HNO₃. Custom ICP-MS/OES calibration standards are available upon request.

69-Element Group

Rare Earth ICP-MS Standard			
CCS-1	C	Matrix	c: HNO ₃
CCS-1-125ML CCS-1-500ML		Volume: Volume:	125 mL 500 mL
Analyte	μg/mL	Analyte	μg/mL
Се	100	Pr	100
Dy	100	Sc	100
Er	100	Sm	100
Eu	100	Tb	100
Gd	100	Th	100
Но	100	Tm	100
La	100	U	100
Lu	100	Υ	100
Nd	100	Yb	100

For ICP analysis of all rare earth elements plus U and Th. Uranium is isotopically depleted. Can be diluted with CCS-4 and CCS-6 to working concentrations.

Precious Metals ICP-MS Standard				
CCS-2	C	Matrix: HCl		
CCS-2-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Au	100	Pt	100	
lr	100	Rh 100		
Pd	100	Ru	100	

For simultaneous ICP analysis of precious metals. Can be diluted with CCS-1 or CCS-5 to working concentrations. For dilution with CCS-6 please see Silver Chemical Stability article for more information about Ag stability in HCl.

Alkali, Alka	Alkali, Alkaline, Non-Transition ICP-MS Standard			
CCS-4	C	Matrix: HNO ₃		
CCS-4-125ML CCS-4-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte	μg/mL	
Al	100	In	100	
As	100	K	100	
Ba	100	Li 100		
Ве	100	Mg	100	
Bi	100	Na	100	
Ca	100	Rb	100	
Cs	100	Se 100		
Ga	100	Sr	100	

For use as stock concentrate for ICP analysis. Can be diluted with CCS-1 and CCS-6 to working concentrations.

Fluoride Soluble ICP-MS Standard			
CCS-5	C	Matrix: HNO ₃ /HF	
CCS-5-125 CCS-5-500		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
В	100	Sb	100
Ge	100	Si	100
Hf	100	Sn	100
Мо	100	Та	100
Nb	100	Ti	100
P	100	W	100
Re	100	Zr	100
S	100		

For ICP analysis of elements that tolerate or require HF for stability. Can be diluted with CCS-2 and CCS-6 to working concentrations. Can be diluted with CCS-4 to lower working concentrations (<10 ppm recommended).

These elements are grouped for ease of use. Intended for ICP-MS and ICP-OES, they can be used individually or in any combination upon dilution into 1% HNO₃. Custom ICP-MS/OES calibration standards are available upon request.

69-Element Group

Transition ICP-MS Standard				
CCS-6	C	Matrix: HNO ₃		
	CS-6-125ML CS-6-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	100	Mn	100	
Cd	100	Ni	100	
Co	100	Pb	100	
Cr	100	TI	100	
Cu	100	V	100	
Fe	100	Zn	100	
Hg	100			

For use as stock concentrate for ICP analysis. Can be diluted with CCS-1 and CCS-4 to working concentrations. Contains mercury (Hg); please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

ICP-MS Refractory Elements Standard			
IV-ICPMS-71B			HNO ₃ / HF
IV-ICPMS-71B-125ML IV-ICPMS-71B-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ge	10	Sn	10
Hf	10	Та	10
Мо	10	Те	10
Nb	10	Ti	10
Sb	10	W	10
Si	10	Zr	10

Can be diluted to working concentrations without additional HF for stability.

71-Element Group

ICP-MS Complete Standard			
IV-ICPMS-7	71A <u>()</u>	Matrix: HNO ₃	
IV-ICPMS-71A-125ML IV-ICPMS-71A-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Lu	10
Al	10	Mg	10
As	10	Mn	10
В	10	Na	10
Ba	10	Nd	10
Ве	10	Ni	10
Ca	10	Р	10
Cd	10	Pb	10
Се	10	Pr	10
Co	10	Rb	10
Cr	10	S	10
Cs	10	Se	10
Cu	10	Sm	10
Dy	10	Sr	10
Er	10	Th	10
Eu	10	TI	10
Fe	10	Tm	10
Ga	10	U	10
Gd	10	V	10
Но	10	Yb	10
K	10	Zn	10
La	10		

Uranium is isotopically depleted. Can be diluted with other multi-element standards to working concentrations.

These elements are grouped for ease of use. Intended for ICP-MS and ICP-0ES, they can be used individually or in any combination upon dilution into 1% HNO₃. Custom ICP-MS/0ES calibration standards are available upon request.

71-Element Group

ICP-MS Precious Metals Standard			
IV-ICPMS-71C ()		Matrix: HCl	
IV-ICPMS-71C-125ML IV-ICPMS-71C-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Au	10	Pt	10
lr	10	Re	10
0s	10	Rh	10
Pd	10	Ru	10

Contains osmium (Os); avoid dilutions with oxidizing acids such as concentrated HNO3. For dilutions including Ag please see Silver Chemical Stability article for more information about Ag stability in HCI.

ICP-MS Internal Standard			
IV-ICPMS-71D			c: HNO ₃
IV-ICPMS-71D-125ML IV-ICPMS-71D-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Bi	10	Sc	10
In	10	Tb	10
⁶ Li	10	Υ	10

Covers mass range from 6-Li to 209-Bi. Certified reference material that may also be used for calibration. Can be diluted with other multi-element standards to working concentrations.

Lithium ICP-MS Standard		
MSLI-10PPM C Matrix: HNO ₃		
MSLI-10PPM-125ML Volume: 125 mL		
Analyte μg/mL		
Li 10		

Mercury ICP-MS Standard		
MSHG-10PPM () Matrix: HCl		
MSHG-10PPM-125ML Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	
Hg 10		

Tellurium ICP-MS Standard		
MSTEN-100PPM (C) Matrix: HNO ₃		
MSTEN-100PPM-125ML Volume: 125 mL		
Analyte	μg/mL	
Te	100	

AGI Tuning Solution			
AGI-TS-1		Matrix: HNO ₃	
AGI-TS-1-1 AGI-TS-1-5			125 mL 500 mL
Analyte	μg/mL	Analyte	μg/mL
Ce	10	TI	10
Co	10	Υ	10
Li	10		

ICP-MS stock tuning solution designed for dilution to working concentrations. Covers mass range from Li to Tl. Certified reference material that may also be used for calibration. Agilent P/N 5188-6564.

CIROS Tuning Solution			
CIROS-OES-TS S Matrix: HCl / HN			ICI / HNO ₃
CIROS-OES	CIROS-OES-TS-125ML		125 mL
Analyte	μg/mL	Analyte	μg/mL
Fe	10	Р	10
K	10	S	50
La	10	Sc	10
Mg	5	Ti	10
Mn	5		

For reprofiling optics of Spectro Ciros ICP-OES.

GENESIS Calibration Standard			
GENESIS-ICAL S		Matrix: HNO ₃ / HCl / HF	
GENESIS-ICAL-125ML GENESIS-ICAL-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ве	2	Na	5
Ca	1	Ni	10
Се	10	Р	10
Cu	10	S	50
Eu	10	Sc	5
Fe	10	Si	10
In	10	Sr	2
K	10	Ti	10
Li	2	V	10
Mn	5	Υ	10
Мо	5	Zr	10

For reprofiling optics of Spectro Ciros ICP-OES.

Trace	Trace Metals in Water - SRM1643			
IV-STOCK-	1643 N	Matrix	c: HNO ₃	
IV-STOCK-1643-125ML IV-STOCK-1643-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/L*	Analyte	μg/L*	
Ag	1	Mg	8,000	
Al	142	Mn	39	
As	60	Мо	121	
В	158	Na	21,000	
Ва	544	Ni	62	
Ве	14	Pb	20	
Bi	14	Rb	14	
Ca	32,000	Re	113	
Cd	7	Sb	58	
Co	27	Se	12	
Cr	20	Sr	323	
Cu	23	Te	1	
Fe	98	TI	7	
K	2,000	V	38	
Li	17	Zn	79	

^{*}Parts per billion

For quality control and method evaluation of fresh water trace element analyses. Ready to use without dilution.

Instrument Check Standard			
PE-CHK-1	PE	Matrix: HNO ₃ / HF	
PE-CHK-1-1	125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Mn	10
Al	10	Ni	10
As	10	Pb	10
Ba	10	Sb	10
Ве	10	Se	10
Cd	10	TI	10
Co	10	V	10
Cr	10	Zn	10
Cu	10		

For daily instrument calibration.

Agilent/Varian

Perkin Elmer

NIST

Spectro

Tuning Solution				
PE-TS-1	PE	Matrix: HNO ₃		
PE-TS-1-125ML PE-TS-1-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ва	10	Mg	10	
Ве	10	Pb	10	
Ce	10	Rh	10	
Co	10	TI	10	
In	10	U	10	
Li	10	Υ	10	

For instrument set-up and calibration. Covers mass range from Li to U (isotopically depleted).

ICP-MS Tuning Solution – Tune B iCAP			
THERMO-4	AREV 🕕	Matrix: I	HNO ₃ /HCI
THERMO-4AREV-500ML THERMO-4AREV-1L		Volume: 500 mL Volume: 1 L	
Analyte	μg/L*	Analyte	μg/L*
Ва	1	In	1
Bi	1	Li	1
Ce	1	U	1
Co	1	*Parts per billion	

Tuning solution for Thermo iCAP Q ICP-MS. Equivalent to Thermo P/N 1323770.

ICP-MS Tuning Solution – iCAP Q			
THERMO-5	A I	Matrix: HNO ₃	
THERMO-5A-125ML THERMO-5A-250ML		Volume: 125 mL Volume: 250 mL	
Analyte	μg/L*	Analyte	μg/L*
Ag	6	Mg	10
Al	10	Mn	6
Ва	4	Ni	15
Ве	35	Rh	3
Bi	3	Sc	8
Ce	3	Sr	5
Co	8	Та	3
Cs	3	Tb	3
Cu	15	TI	4
Ga	10	U	3
Но	3	Υ	3
In	3	Zn	20
Li	8	*Parts per billion	

Calibration standard for Thermo iCAP Q ICP-MS. Equivalent to Thermo P/N 1323760.

Tuning Solution			
THM-TS-1	C	Matrix: HNO ₃	
THM-TS-1-	125ML	Volume:	: 125 mL
Analyte	μg/mL	Analyte	μg/mL
В	10	Lu	10
Ва	10	Na	10
Co	10	Rh	10
Fe	10	Sc	10
Ga	10	Th	10
In	10	U	10
K	10	Υ	10
Li	10		

A general tuning solution suitable for numerous ICP-MS designs and models.

Common Multi-Element Standard

Perkin Elmer

Thermo Scientific

Tune	F-X-Series	Tuning Sol	ution	
TUNE F-X-SERIES Matrix: HNO ₃ /HF				
TUNE F-X-SERIES- 125ML		Volume: 125 mL		
Analyte	ng/mL*	Analyte	ng/mL*	
Ag	40	Na	40	
Al	50	Nb	20	
As	250	Nd	45	
В	200	Ni	150	
Ba	50	Р	1000	
Ве	500	Pb	10	
Bi	5	Pd	100	
Ca	1000	Pr	10	
Cd	100	Rb	30	
Ce	10	Re	15	
Co	35	Sb	40	
Cr	40	Sc	30	
Cs	15	Se	1250	
Cu	150	Si	1000	
Dy	25	Sm	45	
Er	15	Sn	45	
Eu	10	Sr	20	
Fe	20	Ta	5	
Ga	45	Tb	5	
Gd	45	Te	500	
Ge	150	Th	5	
Hf	15	Ti	500	
Но	5	TI	10	
In	10	Tm	5	
K	35	U	5	
La	10	V	40	
Li	100	W	25	
Lu	5	Υ	15	
Mg	50	Yb	25	
Mn	20	Zn	150	
Мо	100	Zr	35	

*Parts per billion

For detector cross-calibration on Thermo X-Series ICP-MS.

Calibration Standard				
VAR-CAL-1 AV Matrix: HNO ₃ / HF			HNO ₃ / HF	
VAR-CAL-1-125ML VAR-CAL-1-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte µg/mL		
Мо	100	Sn 100		
Sb	100	Ti	100	

General ICP-OES calibration standard. Designed to be mixed with VAR-CAL-2 at working concentrations.

Calibration Standard			
VAR-CAL-2	AV	Matrix: HNO ₃	
VAR-CAL-2	-125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	100	Mn	100
Al	100	Ni	100
As	100	Pb	100
Ba	100	Se	100
Ве	100	Th	100
Cd	100	TI	100
Co	100	U	100
Cr	100	V	100
Cu	100	Zn	100

General ICP-OES calibration standard. Designed to be mixed with VAR-CAL-1 at working concentrations.

Calibration Standard			
VAR-CAL-7	AV	Matrix: HNO ₃ /HF	
	VAR-CAL-7-125ML VAR-CAL-7-500ML		125 mL 500 mL
Analyte	μg/mL	Analyte	μg/mL
Al	5	Mn	5
As	5	Мо	5
Ba	5	Ni	5
Cd	5	Pb	5
Co	5	Se	5
Cr	5	Sr	5
Cu	5	Zn	5
K	50		

ICP-0ES calibration standard.

Multi-Element Standards

MULTI-ELEMENT STANDARDS

Identical or near identical formulations

ICP Internal Standard				
VAR-IS-1 AV Matrix: HNO ₃				
VAR-IS-1-125ML Volume: 125 mL		: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Bi	100	Sc	100	
In	100	Tb	100	
⁶ Li	100	Υ	100	

For use as ICP-MS multi-element internal standard. Covers mass range from 6-Li to 209-Bi

Tuning Solution				
VAR-TS-MS	S AV	Matrix: HNO ₃		
VAR-TS-MS-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ba	10	Mg	10	
Ве	10	Pb	10	
Се	10	Th	10	
Со	10	TI	10	
In	10			

For use as ICP-MS tuning solution. Covers mass range from 9-Be to 232-Th. Certified reference material that may also be used for calibration.

AV	Agilent/Varian
----	----------------

HIGH-PURITY IONIZATION BUFFERS

Ionization buffers are 99.999+% pure. They are analyzed using both axial-view ICP-OES and ICP-MS for 70+ impurities. Custom ionization buffers are available upon request.

1% Cesium Ionization Buffer			
CSN-ISB Matrix: HNO ₃			
CSN-ISB-500ML Volume: 500 mL			
Analyte μg/mL			
Cs 10,000			
High Purity buffer; ideal for Axial View ICP-OES			

For stabilizing the degree of ionization in flame AA and ICP-0ES analysis.

5% Cesium Ionization Buffer			
CSN-ISB5 Matrix: HNO ₃			
CSN-ISB5-500ML Volume: 500 mL			
Analyte μg/mL			
Cs 50,000			

For stabilizing the degree of ionization in flame AA and ICP-OES analysis.

2% Lithium Ionization Buffer			
LINB2 Matrix: HNO ₃			
LINB2-125ML Volume: 125 mL			
Analyte μg/mL			
Li 20,000			

For stabilizing the degree of ionization in flame AA and ICP-OES analysis. Not to be used as a calibration standard, for analytical reagent use only.

Manufactured with high-purity starting materials and reagents. Products can be used for calibration of analytical instruments, validation of analytical methods, or for other applications deemed fit for purpose by the end-user. Can be diluted with other multi-element standards to working concentrations. Certificate of Analysis includes lot specific trace metal impurity analysis.

For the pharmaceutical industry, Inorganic Ventures has developed CRMs to comply with the United States Pharmacopeia (USP) general chapters on elemental impurity USP <232> limits and USP <233> procedures.

These methods are for testing inorganic impurities in pharmaceutical products by ICP. The International Conference on Harmonization (ICH) Working Group on Elemental Impurities is in the process of developing a harmonized approach for controlling these impurities as well.

USP <232> Precious Metals Elemental Impurities				
IV-STOCK-38 U Matrix: HCI				
IV-STOCK-38-125ML Volume: 125 r			125 mL	
Analyte	μg/mL	Analyte	μg/mL	
lr	100	Pt	100	
Os 100		Rh	100	
Pd	100	Ru	100	

USP <232> Oral Elemental Impurities				
IV-STOCK-40 U Matrix: HNO ₃				
IV-STOCK-	40-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
As	1.5	Мо	100	
Cd 25		Ni	500	
Cu	1000	Pb	5	
Hg	15	V	100	

USP <232	USP <232> Parenteral Elemental Impurities			
IV-STOCK-41 U Matrix: HNO ₃				
IV-STOCK-	IV-STOCK-41-125ML Volume: 125 mL			
Analyte	μg/mL	Analyte	μg/mL	
As	1.5	Мо	10	
Cd	2.5	Ni	50	
Cu	100	Pb	5	
Hg	1.5	V	10	

USP <232> Drug Substance and Excipients			
IV-STOCK-60		Matrix: HCl	
IV-STOCK-60-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
As	1.5	0s	10
Cd	0.5	Pb	0.5
Cr	1100	Pd	10
Cu	300	Pt	10
Hg	3	Rh	10
lr	10	Ru	10
Мо	300	V	10
Ni	20		

USP <232> / ICH Q3D Class 1 Oral Elemental Impurities				
IV-STOCK-65 U Matrix: HNO ₃				
IV-STOCK-65-125ML		Volume: 125 mL		
Analyte μg/mL		Analyte	μg/mL	
As 15		Hg	30	
Cd	5	Pb	5	

USP <232> / ICH Q3D Class 2A Oral Elemental Impurities			
IV-STOCK-66 U Matrix: HNO ₃			k: HNO ₃
IV-STOCK-66-125ML		Volume: 125 mL	
Analyte µg/mL		Analyte	μg/mL
Co	50	V	100
Ni	200		

USP Method <232>

USP <232> / ICH Q3D Class 2B Oral Elemental Impurities				
IV-STOCK-67				
IV-STOCK-67-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Au	100	Rh	100	
lr	100	Ru	100	
0s	100	Se	150	
Pd	100	TI	8	
Pt	100			

USP <232> / ICH Q3D Class 3 Oral Elemental Impurities				
IV-STOCK-69 U Matrix: HNO ₃ /tr HF				
IV-STOCK-69-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ba	140	Мо	300	
Cr	1100	Sb	120	
Cu	300	Sn	600	
Li	55			

USP <232> / ICH Q3D Oral Elemental Impurities					
IV-STOCK-	IV-STOCK-78 U Matrix: HCI				
IV-STOCK-	78-125ML	Volume:	125 mL		
Analyte	μg/mL	Analyte	μg/mL		
Ag	15	Ni	20		
As	1.5	Os	10		
Au	30	Pb	0.5		
Ba	140	Pd	10		
Cd	0.5	Pt	10		
Co	5	Rh	10		
Cr	1100	Ru	10		
Cu	300	Sb	120		
Hg	3	Se	15		
lr	10	Sn	600		
Li	55	TI	0.8		
Мо	300	V	10		

USP <232> / ICH Q3D Class 2B Oral Elemental Impurities			
IV-STOCK-68 U Matrix: HNO ₃			
IV-STOCK-68-125ML Volu			: 125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag*	150		

^{*} Silver has been separated from the other Class 2B elements due to long-term stability concerns. However, IV-STOCK-68 can be combined with IV-STOCK-67 at working levels. Contact Technical Support or visit our Technical Forum for more information regarding Ag in HCl matrices.

USP <232> / ICH Q3D Oral Elemental Impurities			
IV-STOCK-	70 U	Matrix: HCl	
IV-STOCK-	70-125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	15	Ni	20
As	1.5	0s	10
Au	10	Pb	0.5
Ва	140	Pd	10
Cd	0.5	Pt	10
Co	5	Rh	10
Cr	1100	Ru	10
Cu	300	Sb	120
Hg	3	Se	15
lr	10	Sn	600
Li	55	TI	0.8
Мо	300	V	10

USP <232> / ICH Q3D Class 2B Oral Elemental Impurities				
IV-STOCK-79 U Matrix: HCl				
IV-STOCK-79-125ML Volume: 125 mL			125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Au	300	Rh	100	
lr	100	Ru	100	
0s	100	Se	150	
Pd	100	TI	8	
Pt	100			

USP Method <232>

Bringing Confidence to the Cannibis Industry

In an industry where regulations and testing requirements vary by state, put your trust in Inorganic Ventures. We aim to squash inter-laboratory variations in the Cannabis industry and make it easier for your lab to get accurate results time and time again.

We offer single and multi-element standards to ensure your final product is free of dangerous heavy metals that may arise from soil contamination in agricultural production or manufacturing processes.

- Extensive documentation: Certificate of Analysis (CoA) and Safety Data Sheet (SDS)
- TCT packaging prevents transpiration, guarantees up to a 5-year shelf life, and allows for storage outside of normal lab conditions.
- 100% satisfaction guarantee

10 μg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Arsenic, As	HNO ₃	125 mL	MSAS-10PPM-125ML
Cadmium, Cd	HNO ₃	125 mL	MSCD-10PPM-125ML
Lead, Pb	HNO ₃	125 mL	MSPB-10PPM-125ML
Mercury, Hg	HCI	125 mL 500 mL	MSHG-10PPM-125ML MSHG-10PPM-500ML
Mercury, Hg	$HNO_{\scriptscriptstyle{3}}$	125 mL 500 mL	MSHGN-10PPM-125ML MSHGN-10PPM-500ML

100 μg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Arsenic, As	HNO ₃	125 mL	MSAS-100PPM-125ML
Cadmium, Cd	HNO ₃	125 mL	MSCD-100PPM-125ML
Lead, Pb	HNO ₃	125 mL 500 mL	MSPB-100PPM-125ML MSPB-100PPM-500ML
Mercury, Hg	HCI	125 mL	MSHG-100PPM-125ML
Mercury, Hg	HNO,	125 mL	MSHGN-100PPM-125ML

1,000 µg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Arsenic, As	HNO_3	30 mL 125 mL 500 mL	CGAS1-30ML CGAS1-125ML CGAS1-500ML
Arsenic ⁺³ , As ⁺³	HCI / NaOH / NaHCO ₃	30 mL 125 mL 500 mL	CGAS(3)1-30ML CGAS(3)1-125ML CGAS(3)1-500ML
Arsenic ⁺⁵ , As ⁺⁵	$\rm H_2O$	30 mL 125 mL 500 mL	CGAS(5)1-30ML CGAS(5)1-125ML CGAS(5)1-500ML
Cadmium, Cd	HNO ₃	30 mL 125 mL 500 mL	CGCD1-30ML CGCD1-125ML CGCD1-500ML
Lead, Pb	HNO ₃	30 mL 125 mL 500 mL	CGPB1-30ML CGPB1-125ML CGPB1-500ML
Mercury, Hg	HNO ₃	30 mL 125 mL 500 mL	CGHG1-30ML CGHG1-125ML CGHG1-500ML

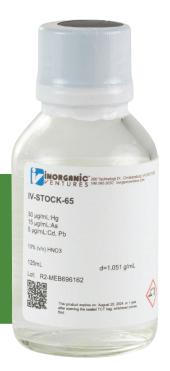
10,000 μg/mL

ANALYTE	MATRIX	VOLUME	CATALOG #
Arsenic, As	HNO ₃	30 mL 125 mL 500 mL	CGAS10-30ML CGAS10-125ML CGAS10-500ML
Cadmium, Cd	HNO ₃	125 mL 500 mL	CGCD10-125ML CGCD10-500ML
Lead, Pb	HNO ₃	30 mL 125 mL 500 mL	CGPB10-30ML CGPB10-125ML CGPB10-500ML
Mercury, Hg	HNO ₃	125 mL 500 mL	CGHG10-125ML CGHG10-500ML

Does your state require testing for elements in addition to the Big 4? Request a custom quote! As the leading manufacturer of custom inorganic standards, we've produced tens of thousands of unique custom blends for laboratories worldwide.

While our USP <232>/ICH Q3D stock products were formulated for the pharmaceutical industry, these products can be used to test heavy metals in cannabis. The Big 4 (Arsenic, Mercury, Cadmium, and Lead) are common analytes for cannabis testing.

USP <232> / ICH Q3D Class 1 Oral Elemental Impurities				
IV-STOCK-65-125ML Volume: 125 mL Matrix: HNO ₃				
Analyte	μg/mL	Analyte	μg/mL	
As	15	Hg	30	
Cd	5	Pb	5	


The following are custom products. They are available to order, but not are not stock items.

Custom Heavy Metal Standard				
IV-6239 Matrix: HNO ₃				
Analyte	μg/mL	Analyte μg/mL		
As	15	Hg	3	
Cd	2	Pb	5	

Custom Heavy Metal Standard				
IV-48592 Matrix: HNO ₃				
Analyte	μg/mL	Analyte μg/mL		
As	2	Hg	1	
Cd	2	Pb	5	

Don't see what you need?

Contact us with the solution part number and instrument manufacturer you're seeking, and we'll check our extensive library of solutions.

EPA STANDARDS

Over the years, we've developed a unique line of EPA standards. If you do not see what you are looking for, please contact us with an EPA custom request and we will get you competitive pricing guaranteed.

Contents

ILM03.0	59
ILMO4.0	61
ILMO5.2 & ILMO5.3	63
Method 200.7	66
Method 200.8	76
Method 1311	79
Method 6020	80
Need a Custom CRM2	15

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ Assayed by validated Wet Chemical procedures
- Assayed by validated instrument procedures

EPA STANDARDS

M03.0

Standards for ILMO3.0 are designed for use with ICP-OES. Custom EPA standards are available upon request.

	Calibration Standard			
CLPP-CAL-1 Matrix: HNO ₃ Dilution 1:100				
CLPP-CAL-	CLPP-CAL-1-125ML		125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	250	Fe	1,000	
Al	2,000	K	5,000	
Ba	2,000	Mg	5,000	
Ве	50	Mn	500	
Ca	5,000	Na	5,000	
Со	500	Ni	500	
Cr	200	V	500	
Cu	250	Zn	500	

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

Calibration Standard				
CLPP-CAL-3 Matrix: HNO ₃ Dilution 1:100			k: HNO ₃ on 1:100	
CLPP-CAL-3-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte μg/mL		
As	1,000	Se	1,000	
Cd	500	TI	1,000	
Pb	1,000			

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

Calibration Standard		
CGSB1 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100		
CGSB1-125ML Volume: 125 mL		
Analyte μg/mL		
Sb 1,000		

CICV Standards - Continuing and Initial Calibration Verification

	CICV Standard [†]			
QCP-CICV-	1	Matrix: HNO ₃ Dilution 1:100 or 1:500		
QCP-CICV-	QCP-CICV-1-125ML		e: 125 mL	
Analyte	μg/mL	Analyte µg/mL		
Ag	125	Fe	500	
Al	1,000	K	2,500	
Ba	1,000	Mg 2,500		
Be	25	Mn	250	
Ca	2,500	Na	2,500	
Co	250	Ni	250	
Cr	100	V 250		
Cu	125	Zn	250	

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

CICV Standard⁺			
QCP-CICV-2 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100 or 1:500			
QCP-CICV-2-125ML Volume: 125 mL			
Analyte μg/mL			
Sb 500			

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. For analyses requiring antimony (Sb). Designed to be diluted to working concentrations with QCP-CICV-1 and/or QCP-CICV-3.

CICV Standard [†]			
QCP-CICV-3 Matrix: HNO ₃ Dilution 1:100 or 1:500			
QCP-CICV-3-125ML Volume: 125 mL		: 125 mL	
Analyte	μg/mL	Analyte µg/mL	
As	500	Se	500
Cd	250	TI	500
Pb	500		

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

[†]Manufactured from in-house Second Source concentrates, whenever possible

CRDL Standards - Contract Required Detection Limit

EPA STANDARDS

We can create any CRDL standard to best fit your needs.

Custom solutions are our specialty.

Soil & Water Spike Standards

	Spike Standard*			
CLPP-SPK-1 Matrix: HNO ₃ Dilution 1:1,000				
CLPP-SPK-1-125ML Volume: 125		: 125 mL		
Analyte	μg/mL	Analyte µg/mL		
Ag	50	Cu	250	
Al	2,000	Fe	1,000	
Ba	2,000	Mn 500		
Ве	50	Ni	500	
Co	500	V	500	
Cr	200	Zn	500	

For use as ICP-OES soil or water spike standard in EPA Contract Laboratory Program (CLP) methods.

Spike Standard*			
CLPP-SPK-2 Matrix: HNO ₃ /Tartaric Acid Dilution 1:1,000			
CLPP-SPK-2-125ML Volume: 125 mL			
Analyte μg/mL			
Sb 500			

For use as Sb spike standard in EPA Contract Laboratory Program (CLP) methods.

*Instructions included.

Interference Check Standards

For use as ICP-OES soil or water spike standard in EPA Contract Laboratory Program (CLP) methods.

Interference Check Standard			
CLPP-ICS-A Matrix: HNO ₃ Dilution 1:10			
CLPP-ICS-A-125ML CLPP-ICS-A-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte μg/mL	
Al	5,000	Fe	2,000
Ca	5,000	Mg	5,000

Interference Check Standard			
CLPP-ICS-B		Matrix: HNO ₃ Dilution 1:100	
CLPP-ICS-B-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte µg/mL	
Ag	100	Cu	50
Ba	50	Mn 50	
Ве	50	Ni 100	
Cd	100	Pb	100
Co	50	V	50
Cr	50	Zn	100

Standards for ILMO4.0 are designed for use with ICP-OES. Custom EPA standards are available upon request.

Calibration Standards

	Calibration Standard			
CLPP-CAL-	CLPP-CAL-1 Matrix: HNO ₃ Dilution 1:100			
CLPP-CAL-	1-125ML	Volume:	125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	250	Fe	1,000	
Al	2,000	K	5,000	
Ва	2,000	Mg	5,000	
Ве	50	Mn	500	
Ca	5,000	Na	5,000	
Со	500	Ni	500	
Cr	200	V	500	
Cu	250	Zn	500	

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

Calibration Standard				
CLPP-CAL-3 Matrix: HNO ₃ Dilution 1:100			: HNO ₃ n 1:100	
CLPP-CAL-3-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte µg/mL		
As	1,000	Se	1,000	
Cd	500	TI	1,000	
Pb	1,000			

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

Calibration Standard			
CGSB1 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100			
CGSB1-125ML Volume: 125 mL			
Analyte μg/mL			
Sb 1,000			

 $\verb| †Manufactured| from in-house Second Source concentrates|, whenever possible.$

CICV Standards – Continuing and Initial Calibration Verification

CICV Standard [†]			
QCP-CICV-1		Matrix: HNO ₃ Dilution 1:100 or 1:500	
QCP-CICV-	1-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte µg/mL	
Ag	125	Fe	500
Al	1,000	K	2,500
Ва	1,000	Mg	2,500
Ве	25	Mn	250
Ca	2,500	Na	2,500
Co	250	Ni	250
Cr	100	V	250
Cu	125	Zn	250

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

CICV Standard [†]			
QCP-CICV-2 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100 or 1:500			
QCP-CICV-2-125ML Volume: 125 mL			
Analyte μg/mL			
Sb 500			

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. For analyses requiring antimony (Sb). Designed to be diluted to working concentrations with QCP-CICV-1 and/or QCP-CICV-3.

CICV Standard [†]				
QCP-CICV-3 Matrix: HNC Dilution 1:100 or			: HNO ₃ 00 or 1:500	
QCP-CICV-3-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte µg/mL		
As	500	Se	500	
Cd	250	TI	500	
Pb	500			

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

EPA STANDARDS

.M04.0

CRDL Standards – Contract Required Detection Limit

We can create any CRDL standard to best fit your needs.

Custom solutions are our specialty.

Soil & Water Spike Standards

Spike Standard*				
CLPP-SPK-1		Matrix: HNO ₃ Dilution 1:1,000		
CLPP-SPK-	PP-SPK-1-125ML Volume: 125		: 125 mL	
Analyte	μg/mL	Analyte µg/mL		
Ag	50	Cu	250	
Al	2,000	Fe	1,000	
Ва	2,000	Mn	500	
Ве	50	Ni	500	
Со	500	V	500	
Cr	200	Zn	500	

*Instructions included.

For use as ICP-OES soil or water spike standard in EPA Contract Laboratory Program (CLP) methods.

Don't see what you need?

Contact us with the solution part number and instrument manufacturer you're seeking, and we'll check our extensive library of solutions.

Interference Check Standards

Interference Check Standard A				
CLPP-ICS-A Matrix: HNO ₃ Dilution 1:10		HNO ₃ n 1:10		
CLPP-ICS-A-125ML CLPP-ICS-A-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte µg/mL		
Al	5,000	Fe	2,000	
Ca	5,000	Mg	5,000	

For use as ICP-OES interference check standard in EPA Contract Laboratory Program (CLP) methods.

Interference Check Standard B4			
CLPP-ICS-B4		Matrix: HNO ₃ Dilution 1:100	
CLPP-ICS-	CLPP-ICS-B4-125ML		: 125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	20	Mn	50
As	10	Ni	100
Ba	50	Pb	5
Ве	50	Sb	60
Cd	100	Se	5
Co	50	TI	10
Cr	50	V	50
Cu	50	Zn	100

For use as ICP-OES interference check standard in EPA Contract Laboratory Program (CLP) methods.

See individual products for recommended instrumentation and revision. Custom EPA standards are available upon request.

Calibration Standards

Calibration Standard		
CGSB1 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100		
CGSB1-125ML Volume: 125 mL		
Analyte	μg/mL	
Sb	1,000	

Calibration Standard			
CLPP-CAL-1		Matrix: HNO ₃ Dilution 1:100	
CLPP-CAL-	1-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte µg/m	
Ag	250	Fe	1,000
Al	2,000	K	5,000
Ва	2,000	Mg 5,00	
Ве	50	Mn	500
Ca	5,000	Na	5,000
Со	500	Ni	500
Cr	200	V	500
Cu	250	Zn	500

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

Calibration Standard				
CLPP-CAL-3 Matrix: HNO ₃ Dilution 1:100				
CLPP-CAL-3-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte µg/mL		
As	1,000	Se	1,000	
Cd	500	TI	1,000	
Pb	1,000			

For use as ICP calibration standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or CLPP-SPK-2 for suitable Sb reference standard.

CICV Standards – Continuing and Initial Calibration Verification

CICV Standard [†]				
QCP-CICV-1		Matrix: HNO ₃ Dilution 1:100 or 1:500		
QCP-CICV-	1-125ML	Volume: 125 mL		
Analyte	μg/mL	Analyte μg/mL		
Ag	125	Fe	500	
Al	1,000	K	2,500	
Ba	1,000	Mg 2,500		
Ве	25	Mn	250	
Ca	2,500	Na	2,500	
Со	250	Ni	250	
Cr	100	V	250	
Cu	125	Zn	250	

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

CICV Standard [†]		
QCP-CICV-2 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100 or 1:500		
QCP-CICV-2-125ML Volume: 125 mL		
Analyte	μg/mL	
Sb 500		

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. For analyses requiring antimony (Sb). Designed to be diluted to working concentrations with QCP-CICV-1 and/or QCP-CICV-3.

CICV Standard [†]			
QCP-CICV-3		Matrix: HNO ₃ Dilution 1:100 or 1:500	
QCP-CICV-	CP-CICV-3-125ML Volume: 125 mL		: 125 mL
Analyte	μg/mL	Analyte µg/mL	
As	500	Se	500
Cd	250	TI	500
Pb	500		

For use as initial/continuing calibration verification standard in EPA Contract Laboratory Program (CLP) methods. Does not contain antimony (Sb). Please see CGSB1 or QCP-CICV-2 for suitable Sb reference standard.

†Manufactured from in-house Second Source concentrates, whenever possible.

EPA STANDARDS

CRQL Standards - Contract Required Quantitation Limit

CRQL Standard			
CLP-AES-CRQL-2		Matrix: HNO ₃ Dilution 1:100 (water samples) 1:500 (soil samples)	
CLP-AES-CF	QL-2-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	1	K	500
Al	20	Mg	500
As	1	Mn	1.5
Ba	20	Na	500
Ве	0.5	Ni	4
Ca	500	Pb	1
Cd	0.5	Sb	6
Co	5	Se	3.5
Cr	1	TI	2.5
Cu	2.5	V	5
Fe	10	Zn	6

For use as CRQL (Contract Required Quantitation Limit) ICP standard.

Interference Check Standards

Interference Check Standard A			
CLPP-ICS-A Matrix: HNO ₃ Dilution 1:10			
CLPP-ICS-			
Analyte	μg/mL	Analyte μg/ml	
Al	5,000	Fe 2,000	
Ca	5,000	Mg	5,000

For use as ICP-0ES interference check standard in EPA Contract Laboratory Program (CLP) methods.

Interference Check Standard B4			
CLPP-ICS-B4		Matrix: HNO ₃ Dilution 1:100	
CLPP-ICS-	B4-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	20	Mn	50
As	10	Ni	100
Ba	50	Pb	5
Ве	50	Sb	60
Cd	100	Se	5
Со	50	TI	10
Cr	50	V	50
Cu	50	Zn	100

For use as ICP-OES interference check standard in EPA Contract Laboratory Program (CLP) methods.

Soil & Water Spike Standards

Spike Standard			
CLP-MS-SPK Matrix: HNO 3 Dilution 1:100			
CLP-MS-SI	PK-125ML	Volume	: 125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	5	Mn	50
Al	200	Ni	50
As	4	Pb	2
Ва	200	Sb	10
Ве	5	Se	1
Cd	5	TI	5
Co	50	V	50
Cr	20	Zn	50
Cu	25		

For use as ICP soil or water spike standard in EPA Contract Laboratory Program (CLP) methods

Spike Standard			
CLPP-SPK-1		Matrix: HNO₃ Dilution 1:1,000	
CLPP-SPK-	1-125ML	Volume	: 125 mL
Analyte	μg/mL	Analyte µg/mL	
Ag	50	Cu	250
Al	2,000	Fe 1,000	
Ba	2,000	Mn 500	
Ве	50	Ni	500
Co	500	V 500	
Cr	200	Zn	500

For use as ICP-OES soil or water spike standard in EPA Contract Laboratory Program (CLP) methods

Internal Standards & Tuning Solutions

Internal Standard			
6020ISS		Matrix: HNO ₃ Dilution 1:100	
6020ISS-12 6020ISS-50			:: 125 mL :: 500 mL
Analyte	μg/mL	Analyte µg/mL	
Bi	10	Rh 10	
Но	10	Sc	10
In	10	Tb	10
⁶ Li	10	Υ	10

Internal standard for ICP-MS in all versions of EPA Method 6020.

Tuning Solution			
2008TS		Matrix: HNO₃ Dilution 1:100 to 1:1,000	
2008TS-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte µg/mL	
Ве	10	Mg	10
Co	10	Pb	10
In	10		

For use as ICP-MS tuning solution in EPA Method 200.8.

Tuning Solution			
6020TS		Matrix: HNO ₃ Dilution 1:100	
6020TS-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte μg/mL	
Со	10	Li 10	
In 10 TI 10		10	

For use as general tuning solution suitable for numerous ICP-MS designs and models. Covers mass range from Li to TI. Certified reference material that may also be used for calibration.

EPA STANDARDS

Blank & Rinse Solutions

Blank & Rinse solutions are prepared using double-distilled reagents and 18 megohm (M Ω) deionized water. They come packaged in ultra-clean LDPE bottles and are ready to use. Custom solutions are available upon request.

2% (v/v) Nitric Acid Rinse		
CLP-MS-RINSE Matrix: HNO ₃		
CLP-MS-RINSE-125ML Volume: 125 mL Volume: 500 mL		

See pg. 108 for more Blank & Rinse Solution options.

For use as ultra-pure nitric acid ICP rinse or blank solution. Suitable for EPA Contract Laboratory Program (CLP) methods. Manufactured using ultra-high purity HN03, >18 $M\Omega$ deionized water, and packaged in specially cleaned LDPE bottles. Certificate includes trace metal impurity values representative of typical analyses.

200.7 Calibration

Standards for Method 200.7 are designed for use with ICP-0ES. Custom EPA standards are available upon request. Standards are designed for Method 200.7, Method 3120, Method 6010A Rev. 1 and Method 200.7 CLP-M.

Calibration Standard			
CLPP-SPK-2 Matrix: HNO ₃ /Tartaric Acid Dilution 1:100			HNO ₃ /Tartaric Acid ilution 1:100
CLPP-SPK-2-125ML			ume: 125 mL
Analyte	μg/mL		λ(nm)
Sb	500		206.833

For use as Sb spike standard in EPA Contract Laboratory Program (CLP) methods.

Ca	libratioi	ո Standa	ard
WW-CAL-1A		Matrix: HNO ₃ Dilution 1:100	
WW-CAL-1A-12	25ML Volume: 125 mL		lume: 125 mL
Analyte	μg/	mL	λ(nm)
Ag	50		328.068
As	1,0	00	193.759
В	100		249.678
Ba	100		493.409
Ca	1,000		315.887
Cd	200		226.502
Cu	200		324.754
Mn	200		257.610
Se	50	00	196.090
Sr*	10	00	421.552

For use as ICP-OES calibration standard I in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions

 \star NOTE: Sr does not exhibit spectral interference problems with any of the EPA Method 200.7 analytes.

Calibration Standard			
WW-CAL-2		Matrix: HNO₃ / HF Dilution 1:100	
WW-CAL-2-125	ML Volume: 125 mL		ume: 125 mL
Analyte	μg/mL		λ(nm)
K	2,000		766.491
Li	500		670.784
Мо	1,000		203.844
Na	1,0	00	588.995
Ti	1,0	00	334.941

For use as ICP-OES calibration standard II in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard			
WW-CAL-3	Matrix: HNO ₃ Dilution 1:100		
WW-CAL-3-125	Volume: 125 mL		ume: 125 mL
Analyte	μg/mL		λ(nm)
Ce	200		413.765
Со	200		228.616
Р	1,000		214.914
V	20	00	292.402

For use as ICP-OES calibration standard III in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

200.7 Calibration

Calibration Standard				
WW-CAL-4A		Matrix: HNO ₃ Dilution 1:100		
WW-CAL-4A-12	25ML Volume: 125 mL		ume: 125 mL	
Analyte	μg/mL		λ (nm)	
Al	1,000		308.215	
Cr	500		205.552	
Hg	200		194.227	
Zn	50	00	213.856	

For use as ICP-OES calibration standard IV (Part A) in EPA Method 200.7. Designed to be mixed with WW-CAL-4B at working concentrations. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard			
WW-CAL-4B Matrix: HNO ₃ / HF Dilution 1:100			rix: HNO ₃ / HF ilution 1:100
WW-CAL-4B-125ML		Volume: 125 mL	
Analyte	μg/mL		λ (nm)
SiO ₂	1,000		251.611
Sn	40	00	189.980

For use as ICP-OES calibration standard IV (Part B) in EPA Method 200.7. Designed to be mixed with WW-CAL-4A at working concentrations. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard			
WW-CAL-5		Matrix: HNO ₃ Dilution 1:100	
WW-CAL-5-125MI	_	Volume: 125 mL	
Analyte	μg/mL		λ(nm)
Be		100	313.042
Fe	1,000		259.940
Mg	1,000		279.079
Ni	200		231.604
Pb	1,000		220.353
TI		500	190.864

For use as ICP-0ES calibration standard V in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

200.7 Interference Checks

Interference Check Standard			
CGSB1 Matrix: HNO ₃ /Tartaric Acid			
CGSB1-125ML Volume: 125 mL			
Analyte	μg/mL		
Sb 1,000			

Interference Check Standard			
2007ICS-1 Matrix: HNO ₃ / HF Dilution 1:100			NO ₃ / HF n 1:100
2007ICS-1-	125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
В	500	Si	230
Мо	300	Ti	1,000

For use as ICP-OES interference check standard in EPA Method 200.7.

Into	Interference Check Standard			
2007ICS-3	Matrix: HNO ₃ Dilution 1:100		3	
2007ICS-3	-125ML	Volume:	125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	300	K	20,000	
As	1,000	Mn	200	
Ba	300	Ni	300	
Ве	100	Pb	1,000	
Cd	300	Se	500	
Co	300	TI	1,000	
Cr	300	V	300	
Cu	300	Zn	300	

For use as ICP-0ES interference check standard in EPA Method 200.7.

Interference Check Standard			
2007ICS-4 Matrix: HNO, Dilution 1:50			: HNO ₃ on 1:50
2007ICS-4	-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	3,000	Mg	7,500
Ca	15,000	Na	2,500
Fe	12,500		

For use as ICP-OES interference check standard in EPA Method 200.7.

Method 200.7

EPA STANDARDS

200.7 Quality Controls

Quality Control Standard [†]			
QCP-QCS-1		Matrix: HNO ₃ Dilution 1:100	
QCP-QCS-1-125	ML	Vo	lume: 125 mL
Analyte	µg/	mL	λ (nm)
Ag	2	5	328.068
Al	10	00	308.215
As	20	00	193.759
В	10	00	249.678
Ba	10	00	493.409
Be	10	00	313.042
Ca	10	00	315.887
Cd	10	00	226.502
Се	10	00	413.765
Со	10	00	228.616
Cr	10	00	205.552
Cu	10	00	324.754
Fe	100		259.940
Hg	20	00	194.227
K	50	00	766.491
Li	100		670.784
Mg	100		279.079
Mn	10	00	257.610
Na	10	00	588.995
Ni	10	00	231.604
P	50	00	214.914
Pb	20	00	220.353
Se	10	00	196.090
Sr	10	00	421.552
TI	50	00	190.864
V	10	00	292.402
Zn	10	00	213.856

QCP-QCS-1		Dilution 1:100	
QCP-QCS-1-125	ML	Volume: 125 mL	
Analyte	µд/	mL	λ (nm)
Ag	2	5	328.068
Al	10	00	308.215
As	20	00	193.759
В	10	00	249.678
Ba	10	00	493.409
Ве	10	00	313.042
Ca	10	00	315.887
Cd	10	00	226.502
Ce	10	00	413.765
Co	10	00	228.616
Cr	10	00	205.552
Cu	10	00	324.754
Fe	10	00	259.940
Hg	20	00	194.227
K	50	00	766.491
Li	100		670.784
Mg	100		279.079
Mn	10	00	257.610
Na	10	00	588.995
Ni	10	00	231.604
Р	50	00	214.914
Pb	20	00	220.353
Se	10	00	196.090
Sr	10	00	421.552
TI	50	00	190.864
V	10	00	292.402
Zn	10	00	213.856

For use as ICP-0ES QC standard in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Quality Control Standard [†]				
QCP-QCS-2		Matrix: HNO ₃ / HF Dilution 1:100		
QCP-QCS-2-125M	IL Volume: 125 mL		ne: 125 mL	
Analyte	μg/mL		λ(nm)	
Мо	100		203.844	
Sb	200		206.833	
SiO ₂	500		251.611	
Sn	500		189.980	
Ti		100	334.941	

For use as ICP-OES QC standard in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Quality Control Standard [†]			
IV-7		Matrix: HNO ₃ / HF Dilution 1:100	
IV-7-125MI	-	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	100	K	1,000
Al	100	Na	100
В	100	Si	50
Ba	100		

For use as a certified reference standard in ICP applications. Can be diluted with other standards to working concentrations.

Don't see what you need?

†Manufactured from in-house Second Source concentrates, whenever possible

200.7 Quality Controls

For use as a certified reference standard in ICP applications. Can be diluted with other standards to working concentrations.

Quality Control Standard [†]				
IV-19		Matrix: HNO ₃ / HF Dilution 1:100		
IV-19-125N	IL	Volume	: 125 mL	
Analyte	μg/mL	Analyte	μg/mL	
As	100	Мо	100	
Ве	100	Ni	100	
Ca	100	Pb	100	
Cd	100	Sb	100	
Co	100	Se	100	
Cr	100	Ti	100	
Cu	100	TI	100	
Fe	100	V	100	
Mg	100	Zn	100	
Mn	100			

Quality Control Standard [†]			
IV-21		Matrix: HNO ₃ / HF Dilution 1:100	
IV-21-125N	IL	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
As	100	Мо	100
Ве	100	Ni	100
Ca	100	Pb	100
Cd	100	Sb	100
Co	100	Se	100
Cr	100	Sr	100
Cu	100	Ti	100
Fe	100	TI	100
Li	100	V	100
Mg	100	Zn	100
Mn	100		

Quality Control Standard [†]			
IV-26			INO ₃ / HF n 1:100
IV-26-125N IV-26-500N			: 125 mL : 500 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	100	Mg	100
Al	100	Mn	100
As	100	Мо	100
В	100	Na	100
Ba	100	Ni	100
Ве	100	Pb	100
Ca	100	Sb	100
Cd	100	Se	100
Co	100	Si	50
Cr	100	Ti	100
Cu	100	TI	100
Fe	100	V	100
K	1,000	Zn	100

Quality Control Standard [†]				
IV-28			Matrix: HNO ₃ / HF Dilution 1:100	
IV-28-125M IV-28-500M		Volume: Volume:	125 mL 500 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	100	Mg	100	
Al	100	Mn	100	
As	100	Мо	100	
В	100	Na	100	
Ba	100	Ni	100	
Be	100	Pb	100	
Ca	100	Sb	100	
Cd	100	Se	100	
Co	100	Si	50	
Cr	100	Sr	100	
Cu	100	Ti	100	
Fe	100	TI	100	
K	1,000	V	100	
Li	100	Zn	100	

 $\verb|TManufactured| from in-house Second Source concentrates, whenever possible.$

EPA STANDARDS

Rev. 3.3 & 4.4 Calibrations - Standards may be used for either revision.

Calibration Standard				
CLPP-SPK-2		Matrix: HNO ₃ /Tartaric Acid Dilution 1:100		
CLPP-SPK-2-12	5ML	Volume: 125 mL		
Analyte	μg/mL		λ(nm)	
Sb	500		206.833	

For use as Sb spike standard in EPA Contract Laboratory Program (CLP) methods.

Calibration Standard				
WW-CAL-1A		Matrix: HNO ₃ Dilution 1:100		
WW-CAL-1A-125ML		Volume: 125 mL		
Analyte	µд/	mL	λ(nm)	
Ag	5	0	328.068	
As	1,0	00	193.759	
В	100		249.678	
Ba	10	00	493.409	
Ca	1,0	00	315.887	
Cd	200		226.502	
Cu	200		324.754	
Mn	200		257.610	
Se	50	00	196.090	
Sr	10	00	421.552	

NOTE: Sr does not exhibit spectral interference problems with any of the EPA Method 200.7 analytes.

For use as ICP-OES calibration standard I in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard				
WW-CAL-2		Matrix: HNO ₃ / HF Dilution 1:100		
WW-CAL-2-125	ML Volume: 125 mL		ume: 125 mL	
Analyte	μg/mL		λ(nm)	
K	2,000		766.491	
Li	500		670.784	
Мо	1,000		203.844	
Na	1,000		588.995	
Ti	1,0	00	334.941	

For use as ICP-OES calibration standard II in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard				
WW-CAL-3		Matrix: HNO ₃ Dilution 1:100		
WW-CAL-3-125ML		Volume: 125 mL		
Analyte	μg/mL		λ(nm)	
Ce	200		413.765	
Со	200		228.616	
Р	1,000		214.914	
V	20	00	292.402	

For use as ICP-0ES calibration standard III in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard				
WW-CAL-4A		Matrix: HNO ₃ Dilution 1:100		
WW-CAL-4A-12	-CAL-4A-125ML		Volume: 125 mL	
Analyte	μg/mL		λ(nm)	
Al	1,000		308.215	
Cr	500		205.552	
Hg	200		194.227	
Zn	50	00	213.856	

For use as ICP-OES calibration standard IV (Part A) in EPA Method 200.7. Designed to be mixed with WW-CAL-4B at working concentrations. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Calibration Standard				
WW-CAL-4B		Matrix: HNO ₃ / HF Dilution 1:100		
WW-CAL-4B-125ML		Volume: 125 mL		
Analyte	μg/mL		λ(nm)	
SiO ₂	1,000		251.611	
Sn	40	00	189.980	

For use as ICP-OES calibration standard IV (Part B) in EPA Method 200.7. Designed to be mixed with WW-CAL-4A at working concentrations. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Rev. 3.3 & 4.4 Calibrations – Standards may be used for either revision.

Calibration Standard						
WW-CAL-5		Matrix: HNO ₃ Dilution 1:100				
WW-CAL-5-125ML		Volume: 125 mL				
Analyte	μg/mL		λ(nm)			
Ве	100		313.042			
Fe	1,000		259.940			
Mg	1,000		279.079			
Ni	200		231.604			
Pb	1,000		220.353			
TI	500		190.864			

For use as ICP-OES calibration standard V in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Rev. 3.3 & 4.4 Instrument Performance
Checks - Standards may be used for either revision.

Instrument Performance Check					
WW-IPC-1		Matrix: HNO ₃ Dilution 1:100			
WW-IPC-1-125ML					
		Volume: 125 mL			
Analyte	μg/mL		λ(nm)		
Ag	25		328.068		
Al		00	308.215		
As		00	193.759		
В	200		249.678		
Ba	200		493.409		
Ве	200		313.042		
Ca	200		315.887		
Cd	200		226.502		
Ce	200		413.765		
Co	200		228.616		
Cr	200		205.552		
Cu	200		324.754		
Fe	200		259.940		
Hg	200		194.227		
K	1,000		766.491		
Li	200		670.784		
Mg	200		279.079		
Mn	200		257.610		
Na	200		588.995		
Ni	200		231.604		
Р	1,000		214.914		
Pb	200		220.353		
Se	200		196.090		
Sr	200		421.552		
TI	200		190.864		
V	200		292.402		
Zn	200		213.856		

Performance Check solution for EPA Method 200.7. Designed to be mixed with WW-IPC-2 at working concentrations. Based upon Revision 4.4 and suitable for all 200.7 versions.

EPA STANDARDS

Instrument Performance Check					
WW-IPC-2		Matrix: HNO ₃ / HF Dilution 1:100			
WW-IPC-2-125ML		Volume: 125 mL			
Analyte	μg/mL		λ(nm)		
Мо	200		203.844		
Sb	200		206.833		
SiO ₂	1,000		251.611		
Sn	200		189.980		
Ti	200		334.941		

Performance Check solution for EPA Method 200.7. Designed to be mixed with WW-IPC-1 or WW-IPC-3 at working concentrations. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions

Instrument Performance Check				
WW-IPC-3		Matrix: HNO ₃ Dilution 1:100		
WW-IPC-3-125ML		Volume: 125 mL		
Analyte	μg/mL		λ(nm)	
Ag	25		328.068	
Al	20	00	308.215	
As	200		193.759	
В	200		249.678	
Ba	200		493.409	
Be	200		313.042	
Ca	200		315.887	
Cd	200		226.502	
Co	200		228.616	
Cr	200		205.552	
Cu	200		324.754	
Fe	200		259.940	
K	1,000		766.491	
Li	200		670.784	
Mg	200		279.079	
Mn	200		257.610	
Na	200		588.995	
Ni	200		231.604	
P	1,000		214.914	
Pb	200		220.353	
Se	200		196.090	
Sr	200		421.552	
TI	200		190.864	
V	200		292.402	
Zn	200		213.856	

Performance Check solution for EPA Method 200.7. Designed to be mixed with WW-IPC-2 at working concentrations. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

You can't put time in a bottle. But we can save it in a bag.

Transpiration Control Technology (TCT)

Based on years of study and data evaluation, we improved the way we deliver our quality products. **inorganicventures.com/tct**.

Rev. 3.3 & 4.4 Laboratory Fortified Stocks — Standards may be used for either revision.

Laborator	y Fortifi	ed Stoc	k Solution
WW-LFS-1		Matrix: HNO ₃ Dilution 1:100	
WW-LFS-1-125ML		Vo	lume: 125 mL
Analyte	μg/	mL	λ(nm)
Ag	7.	.5	328.068
Al	20	00	308.215
As	8	0	193.759
В	3	0	249.678
Ba	2	0	493.409
Be	2	0	313.042
Ca	10	00	315.887
Cd	2	0	226.502
Се	20	00	413.765
Со	2	0	228.616
Cr	4	0	205.552
Cu	3	0	324.754
Fe	30	00	259.940
Hg	7	0	194.227
K	1,0	00	766.491
Li	2	0	670.784
Mg	20	00	279.079
Mn	2	0	257.610
Na	30	00	588.995
Ni	5	0	231.604
P	60	00	214.914
Pb	100		220.353
Se	20	00	196.090
Sr	2	0	421.552
TI	20	00	190.864
V	3	0	292.402
Zn	2	0	213.856

Laboratory Fortified Stock Solution for EPA Method 200.7. Designed to be mixed with WW-LFS-2 at working concentrations. Suitable for use with all 200.7 versions.

Laboratory Fortified Stock Solution			
WW-LFS-2		Matrix: HNO ₃ / HF Dilution 1:100	
WW-LFS-2-125	ML Volume: 125 mL		ume: 125 mL
Analyte	μg/mL		λ(nm)
Мо	4	0	203.844
Sb	80		206.833
SiO ₂	200		251.611
Sn	70		189.980
Ti	2	0	334.941

Laboratory Fortified Stock Solution for EPA Method 200.7. Designed to be mixed with WW-LFS-1 at working concentrations. Suitable for use with all 200.7 versions.

Rev. 3.3 & 4.4 Quality Controls – Standards may be used for either revision.

Quality Control Standard [†]			
QCP-QCS-1		Matrix: HNO ₃ Dilution 1:100	
QCP-QCS-1-125ML		Vol	lume: 125 mL
Analyte	μg/	mL	λ(nm)
Ag	2	5	328.068
Al	10	00	308.215
As	20	00	193.759
В	10	00	249.678
Ва	10	00	493.409
Ве	10	00	313.042
Ca	10	00	315.887
Cd	10	00	226.502
Ce	10	00	413.765
Со	10	00	228.616
Cr	10	00	205.552
Cu	10	00	324.754
Fe	10	00	259.940
Hg	20	00	194.227
K	50	00	766.491
Li	10	00	670.784
Mg	10	00	279.079
Mn	100		257.610
Na	10	00	588.995
Ni	10	00	231.604
P	50	00	214.914
Pb	200		220.353
Se	10	00	196.090
Sr	10	00	421.552
TI	50	00	190.864
V	10	00	292.402
Zn	10	00	213.856

For use as ICP-OES QC standard in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Quality Control Standard [†]			
QCP-QCS-2	CP-QCS-2 Matrix: HNO ₃ / HF Dilution 1:100		rix: HNO ₃ / HF ilution 1:100
QCP-QCS-2-125	5ML Volume: 125 mL		lume: 125 mL
Analyte	μg/mL		λ(nm)
Мо	100		203.844
Sb	200		206.833
SiO ₂	500		251.611
Sn	500		189.980
Ti	10	00	334.941

For use as ICP-OES QC standard in EPA Method 200.7. Based upon Revisions 3.3 and 4.4 and suitable for all 200.7 versions.

Quality Control Standard [†]			
IV-7		Matrix: HNO ₃ / HF Dilution 1:100	
IV-7-125ML		Volume	: 125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	100	K	1,000
Al	100	Na	100
В	100	Si	50
Ba	100		

For use as a certified reference standard in ICP applications. Can be diluted with other standards to working concentrations.

†Manufactured from in-house Second Source concentrates, whenever possible.

Rev. 3.3 & 4.4 Quality Controls — Standards may be used for either revision.

For use as a certified reference standard in ICP applications. Can be diluted with other standards to working concentrations.

Quality Control Standard [†]			
IV-19		Matrix: HNO ₃ / HF Dilution 1:100	
IV-19-125N	IL	Volume	: 125 mL
Analyte	μg/mL	Analyte	μg/mL
As	100	Мо	100
Ве	100	Ni	100
Ca	100	Pb	100
Cd	100	Sb	100
Со	100	Se	100
Cr	100	Ti	100
Cu	100	TI	100
Fe	100	V	100
Mg	100	Zn	100
Mn	100		

Quality Control Standard [†]			
IV-21		Matrix: HNO ₃ / HF Dilution 1:100	
IV-21-125M	IL	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
As	100	Мо	100
Ве	100	Ni	100
Ca	100	Pb	100
Cd	100	Sb	100
Co	100	Se	100
Cr	100	Sr	100
Cu	100	Ti	100
Fe	100	TI	100
Li	100	V	100
Mg	100	Zn	100
Mn	100		

Q	Quality Control Standard [†]			
IV-26	IV-26		Matrix: HNO ₃ / HF Dilution 1:100	
IV-26-125N IV-26-500N			: 125 mL : 500 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	100	Mg	100	
Al	100	Mn	100	
As	100	Мо	100	
В	100	Na	100	
Ba	100	Ni	100	
Ве	100	Pb	100	
Ca	100	Sb	100	
Cd	100	Se	100	
Co	100	Si	50	
Cr	100	Ti	100	
Cu	100	TI	100	
Fe	100	V	100	
K	1,000	Zn	100	

Quality Control Standard [†]			
IV-28		Matrix: HNO ₃ / HF Dilution 1:100	
IV-28-125ML IV-28-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	100	Mg	100
Al	100	Mn	100
As	100	Мо	100
В	100	Na	100
Ва	100	Ni	100
Ве	100	Pb	100
Ca	100	Sb	100
Cd	100	Se	100
Co	100	Si	50
Cr	100	Sr	100
Cu	100	Ti	100
Fe	100	TI	100
K	1,000	V	100
Li	100	Zn	100

 $[\]verb|†Manufactured| from in-house Second Source concentrates, whenever possible.$

Standards for Method 200.8 are designed for use with ICP-MS. Custom EPA standards are available upon request.

Rev. 4.4 & 5.4 Calibration – See individual products for recommended revisions.

Calibration Standard			
2008CAL-1		Matrix: HNO ₃ / HF Dilution 1:100	
2008CAL-1-125ML		Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Мо	20	Sb	20

Designed for Rev. 4.4 and 5.4.

For use as ICP-MS calibration standard in EPA Method

	Calibration Standard		
2008CAL-2		Matrix: HNO ₃ Dilution 1:100	
2008CAL-2 2008CAL-2		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	20	Mn	20
Al	20	Ni	20
As	20	Pb	20
Ba	20	Se	20
Ве	20	Th	20
Cd	20	TI	20
Со	20	U	20
Cr	20	V	20
Cu	20	Zn	20

Designed for Rev. 4.4.

For use as ICP-MS calibration standard in EPA Method 200.8.

Calibration Standard		
WW-MSCAL-1 Matrix: HNO ₃ Dilution 1:1,000		
WW-MSCAL-1-125ML	Volume: 125 mL	
Analyte	μg/mL	
Hg 5		

Designed for Rev. 5.4.

For use as ICP-MS calibration standard in EPA Method 200.8. Can be combined with WW-MSCAL-2 at working concentrations if Au is used to stabilize Hg. Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Calibration Standard			
WW-MSCAL-2		Matrix: HNO ₃ Dilution 1:100	
WW-MSCAL-2-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	20	Mn	20
Al	20	Ni	20
As	20	Pb	20
Ва	20	Se	100
Ве	20	Th	20
Cd	20	TI	20
Co	20	U	20
Cr	20	V	20
Cu	20	Zn	20

Designed for Rev. 5.4.

For use as ICP-MS calibration standard in EPA Method 200.8. Uranium is isotopically depleted. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Standards for Method 200.8 are designed for use with ICP-MS. Custom EPA standards are available upon request.

Rev. 4.4 & 5.4 Calibration – See individual products for recommended revisions.

Mercury Standard		
MSHG-1PPM Matrix: HCI		
MSHG-1PPM-125ML MSHG-1PPM-500ML	Volume: 125 mL Volume: 500 mL	
Analyte μg/mL		
Hg 1		

Mercury Standard			
IV-STOCK-73 Matrix: 10% v/v HCl			
IV-STOCK-73-125ML Volume: 125 mL			
Analyte μg/L*			
Hg 100			

Mercury Standard			
IV-STOCK-72 Matrix: 7% v/v HNO ₃			
IV-STOCK-72-125ML Volume: 125 mL			
Analyte μg/L*			
Hg 100			

^{*}Parts per billion

Rev. 4.4 & 5.4 Internal Standards

Internal Standard				
2008ISS		Matrix: HNO₃ Dilution 1:100 to 1:1,000		
2008ISS-125ML 2008ISS-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte	μg/mL	
Bi	20	Tb	20	
In	20	Υ	20	
Sc	20			

Designed for Rev. 4.4 and 5.4. Recommended working level is $200~\mu g/L$ for Rev. 4.4; 20-200 $\mu g/L$ for Rev. 5.4. Use this solution with CGAUN1 for Rev. 5.4 if Hg is to be determined by direct analysis.

Mercury Preservation Solution		
CGAUN1 Matrix: HNO ₃ Dilution 1:100		
CGAUN1-30ML Volume: 30 mL CGAUN1-125ML Volume: 125 mL CGAUN1-500ML Volume: 500 mL		
Analyte	μg/mL	
Au 1,000		

Designed for Rev. 5.4. Add an aliquot of this solution to 2008ISS, sufficient to provide a concentration of 100 μ g/L in the final dilution of all blanks, calibration standards, and samples.

Rev. 4.4 & 5.4 Quality Controls

Quality Control Standard [†]				
QCP-QCS-3		Matrix: HNO ₃ Dilution 1:100		
QCP-QCS-3-125ML QCP-QCS-3-500ML		Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ag	10	Mn	10	
Al	10	Мо	10	
As	10	Na	10	
Ва	10	Ni	10	
Ве	10	Pb	10	
Ca	10	Sb	10	
Cd	10	Se	50	
Co	10	Th	10	
Cr	10	TI	10	
Cu	10	U	10	
Fe	10	V	10	
K	10	Zn	10	
Mg	10			

Designed for Rev. 4.4 and 5.4.

For use as ICP-MS quality control standard in EPA Method 200.8. Uranium is isotopically depleted. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Quality Control Standard [†]		
QCP-QCS-4 Matrix: HNO ₃ Dilution 1:100		
QCP-QCS-4-125ML	Volume: 125 mL	
Analyte μg/mL		
Hg 5		

Designed for Rev. 4.4 and 5.4.

For use as ICP-MS mercury (Hg) quality control standard in EPA Method 200.8. Can be combined with QCP-QCS-3 at working concentrations if Au is used to stabilize Hg, though trace chloride from Au may cause Ag stability problems. Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions, and the Silver Chemical Stability article for more information about Ag stability in the presence of chloride.

 $\verb|TManufactured| from in-house Second Source concentrates, whenever possible.$

Rev. 4.4 & 5.4 Tuning

Tuning Solution				
2008TS Matrix: HNO ₃ Dilution 1:100 to 1:1,000		c: HNO ₃ 00 to 1:1,000		
2008TS-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ве	10	Mg	10	
Со	10	Pb	10	
In	10			

Designed for Rev. 4.4 and 5.4.

For use as ICP-MS tuning solution in EPA Method 200.8.

For use in EPA Toxicity Characteristic Leachate Procedure (TCLP). Custom EPA standards are available upon request.

TCLP Hg Standard		
TCLP-AA-HG Matrix: HNO ₃ Dilution: As required		
TCLP-AA-HG-125ML	Volume: 125 mL	
Analyte μg/mL		
Hg 20		

For use in EPA Toxicity Characteristic Leachate Procedure (TCLP).

TCLP Standard				
TCLP-1REV		Matrix: HNO₃ Dilution: As required		
TCLP-1REV-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ag	25	Cr	25	
As	25	Pb	25	
Ва	500	Se	5	
Cd	5			

For use in EPA Toxicity Characteristic Leachate Procedure (TCLP). $\label{eq:condition} % \begin{subarray}{ll} \end{subarray} % \begin{subarray}$

Don't see what you need?

Contact us with the solution part number and instrument manufacturer you're seeking, and we'll check our extensive library of solutions.

Standards for Method 6020 are designed for use with ICP-MS. Custom EPA standards are available upon request.

CLP-M Version 8

Calibration Standard				
6020CAL-1		Matrix: HNO ₃ / HF Dilution 1:100		
6020CAL-1-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ag	20	K	20	
Al	20	Mg	20	
As	20	Mn	20	
Ba	20	Na	20	
Ве	20	Ni	20	
Ca	20	Pb	20	
Cd	20	Sb	20	
Co	20	Se	20	
Cr	20	TI	20	
Cu	20	V	20	
Fe	20	Zn	20	

For use as ICP-MS calibration standard in EPA Method 6020. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Interference Check Standard			
6020ICS-8A Matrix: H			
6020ICS-8		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	1,000	Mg	1,000
С	2,000	Мо	20
Ca	3,000	Na	2,500
CI-	18,000	P	1,000
Fe	2,500	S	1,000
K	1,000	Ti	20

For evaluating ICP-MS interferences and corrections in EPA Method 6020A or 6020B. Based upon 6020A Revision 1 Solution A.

Internal Standard			
6020ISS		Matrix: HNO ₃ Dilution 1:100	
6020ISS-12 6020ISS-5		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Bi	10	Rh	10
Но	10	Sc	10
In	10	Tb	10
⁶ Li	10	Υ	10

Internal standard for ICP-MS in all versions of EPA Method 6020.

Spike Standard - Soil			
6020SPK-S		Matrix: HNO ₃ Dilution 1:100	
6020SPK-S	K-S-125ML Volume:		125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Ni	25
As	10	Pb	20
Ва	50	Sb	20
Ве	5	Se	5
Cd	10	TI	5
Co	20	V	30
Cr	50	Zn	50
Cu	50		

Matrix spike for solid samples.

Matrix: HNO,

Dilution 1:100

Volume: 125 mL

μg/mL

10

10

Analyte

Li

ΤI

Tuning Solution

Standards for Method 6020 are designed for use with ICP-MS. Custom EPA standards are available upon request.

6020TS

Analyte

Co

In

6020TS-125ML

CLP-M Version 8

Spike Standard – Water			
6020SPK-W		Matrix: HNO ₃ Dilution 1:100	
6020SPK-V	V-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	5	Mn	20
As	10	Ni	20
Ba	50	Pb	10
Ве	5	Sb	20
Cd	5	Se	5
Co	20	TI	5
Cr	20	V	20
Cu	20	Zn	50
Fe	100		

ICP-MS designs and models. Covers mass range from Li to
TI. Certified reference material that may also be used for calibration.

For use as general tuning solution suitable for numerous

μg/mL

10

10

Matrix spike for aqueous samples.

CLP-M Version 9

Calibration Standard			
6020CAL-1		Matrix: HNO ₃ / HF Dilution 1:100	
6020CAL-1	-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	20	K	20
Al	20	Mg	20
As	20	Mn	20
Ва	20	Na	20
Ве	20	Ni	20
Ca	20	Pb	20
Cd	20	Sb	20
Co	20	Se	20
Cr	20	TI	20
Cu	20	V	20
Fe	20	Zn	20

For use as ICP-MS calibration standard in EPA Method 6020. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Interference Check Standard			
6020ICS-9A Matrix: HNO ₃ Dilution 1:10			
6020ICS-9/		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Al	1,000	Mg	1,000
С	2,000	Мо	20
Ca	3,000	Na	2,500
CI-	21,215	Р	1,000
Fe	2,500	S	1,000
K	1,000	Ti	20

For evaluating ICP-MS interferences and corrections in EPA Method 6020A or 6020B. Based upon 6020A Revision 1 Solution A. Suitable for analyses with higher chloride contents.

Interference Check Standard			
6020ICS-9B		Matrix: HNO ₃ Dilution 1:100	
6020ICS-9	B-125ML	Volume:	125 mL
Analyte	μg/mL	Analyte	μg/mL
Ag	5	Mn	20
As	10	Ni	20
Cd	10	Se	10
Co	20	V	20
Cr	20	Zn	10
Cu	20		

For evaluating ICP-MS interferences and corrections in EPA Method 6020A or 6020B. Based upon 6020A Revision 1 Solution B. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Internal Standard			
6020ISS Matrix: HNO ₃ Dilution 1:100			
6020ISS-12 6020ISS-50		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Bi	10	Rh	10
Но	10	Sc	10
In	10	Tb	10
⁶ Li	10	Υ	10

Internal standard for ICP-MS in all versions of EPA Method 6020.

Spike Standard – Soil			
6020SPK-S		Matrix: HNO ₃ Dilution 1:100	
6020SPK-	S-125ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ag	10	Ni	25
As	10	Pb	20
Ba	50	Sb	20
Ве	5	Se	5
Cd	10	TI	5
Co	20	V	30
Cr	50	Zn	50
Cu	50		

Matrix spike for solid samples.

Spike Standard – Water				
6020SPK-W		Matrix: HNO ₃ Dilution 1:100		
6020SPK-V	6020SPK-W-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	5	Mn	20	
As	10	Ni	20	
Ba	50	Pb	10	
Ве	5	Sb	20	
Cd	5	Se	5	
Co	20	TI	5	
Cr	20	V	20	
Cu	20	Zn	50	
Fe	100			

Matrix spike for aqueous samples.

Tuning Solution			
6020TS Matrix: HNO ₃ Dilution 1:100		: HNO ₃ n 1:100	
6020TS-12	5ML	Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Co	10	Li 10	
In	10	TI	10

For use as general tuning solution suitable for numerous ICP-MS designs and models. Covers mass range from Li to TI. Certified reference material that may also be used for calibration.

REV. 0

Calibration Standard				
6020CAL-1		Matrix: HNO ₃ / HF Dilution 1:100		
6020CAL-1	-125ML	Volume:	125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	20	K	20	
Al	20	Mg	20	
As	20	Mn	20	
Ba	20	Na	20	
Ве	20	Ni	20	
Ca	20	Pb	20	
Cd	20	Sb	20	
Co	20	Se	20	
Cr	20	TI	20	
Cu	20	V	20	
Fe	20	Zn	20	

For use as ICP-MS calibration standard in EPA Method 6020. Does not contain mercury (Hg). Please see the Mercury Chemical Stability article for more information regarding accurate Hg analyses in multi-element solutions.

Internal Standard					
6020ISS Matrix: HNO ₃ Dilution 1:100					
6020ISS-12 6020ISS-50		Volume: 125 mL Volume: 500 mL			
Analyte	μg/mL	Analyte µg/mL			
Bi	10	Rh 10			
Но	10	Sc 10			
In	10	Tb 10			
⁶ Li	10	Υ	10		

Internal standard for ICP-MS in all versions of EPA Method 6020.

Interference Check Standard					
6020ICS-0A Matrix: HNO Dilution 1:10					
6020ICS-0A-125ML 6020ICS-0A-500ML		Volume: 125 mL Volume: 500 mL			
Analyte	μg/mL	Analyte	μg/mL		
Al	1,000	Mg	1,000		
С	2,000	Mo 20			
Ca	1,000	Na 1,000			
CI-	10,000	P 1,000			
Fe	1,000	S 1,000			
K	1,000	Ti	20		

For evaluating ICP-MS interferences and corrections in EPA Method 6020. Based upon Revision 0 Solution A.

Interference Check Standard					
6020ICS-0B Matrix: HNO ₃ Dilution 1:100					
6020ICS-0B-125ML		Volume: 125 mL			
Analyte	μg/mL	Analyte µg/mL			
Ag	2	Cu	2		
As	2	Mn 2			
Cd	2	Ni 2			
Co	2	Zn 2			
Cr	2				

For evaluating ICP-MS interferences and corrections in EPA Method 6020. Based upon Revision 0 Solution B.

Spike Standard – Soil				
6020SPK-S Matrix: HNO ₃ Dilution 1:100				
6020SPK-	S-125ML	Volume:	125 mL	
Analyte	μg/mL	Analyte	μg/mL	
Ag	10	Ni	25	
As	10	Pb 20		
Ba	50	Sb 20		
Ве	5	Se 5		
Cd	10	TI 5		
Co	20	V 30		
Cr	50	Zn	50	
Cu	50			

Matrix spike for solid samples.

REV. 0

Spike Standard – Water				
6020SPK-V	V	Matrix: HNO ₃ Dilution 1:100		
6020SPK-W-125ML		Volume: 125 mL		
Analyte	μg/mL	Analyte	μg/mL	
Ag	5	Mn	20	
As	10	Ni	20	
Ba	50	Pb	10	
Ве	5	Sb	20	
Cd	5	Se 5		
Co	20	TI	5	
Cr	20	V	20	
Cu	20	Zn	50	
Fe	100			

Matrix spike for aqueous samples.

Tuning Solution					
6020TS Matrix: HNO ₃ Dilution 1:100					
6020TS-12	6020TS-125ML		125 mL		
Analyte	μg/mL	Analyte	μg/mL		
Со	10	Li 10			
In	10	TI	10		

For use as general tuning solution suitable for numerous ICP-MS designs and models. Covers mass range from Li to TI. Certified reference material that may also be used for calibration.

STOP. Read back before opening

Now, YOU control the expiration date.

With TCT, concerns about shipping and storage conditions are eliminated, as transpiration is no longer an issue. This saves you money and simplifies research by removing the need to constantly inventory and restock CRMs.

Find out more at inorganicventures.com/tct.

ION CHROMATOGRAPHY

If you've been searching for an atypical Ion Chromatography standard, look no further.

Over the years, we've developed the most complete line of IC standards on the market. Our technicians have stabilized more than a dozen rare anion and cation standards thatyou won't find anywhere else.

Contents

Anion Standards	86
Cation Standards	88
Multi-Ion Standards	89
Eluent Concentrates	90
EPA Standards	91
Need a Custom CPM2	10

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ Assayed by validated Wet Chemical procedures
- Assayed by validated IC procedures

ANION STANDARDS

Custom anion standards are available upon request.

ANALYTE	MATRIX	STARTING MATERIAL	VOLUME	CATALOG #
Acetate, $C_2H_3O_2$ -	H_2^0	Sodium acetate	125 mL 500 mL	ICOAC1-125ML ICOAC1-500ML
Adipate, C ₆ H ₈ O ₄ - ²	H ₂ 0	Adipic acid	125 mL	ICADP1-125ML
Benzoate, C ₆ H ₅ CO ₂ -	H_2^0	Benzoic acid	125 mL	ICBEN1-125ML
Bromate, BrO ₃ -	H ₂ 0	KBrO ₃	125 mL 500 mL	ICBR031-125ML ICBR031-500ML
Bromide, Br-	H_2^0	KBr	125 mL 500 mL	ICBR1-125ML ICBR1-500ML
Butyrate, C ₄ H ₇ O ₂ -	H_2^0	Butyric acid	125 mL	ICBTR1-125ML
Carbonate, CO ₃ - ²	H ₂ 0	Na_2CO_3	125 mL 500 mL	ICCO31-125ML ICCO31-500ML
Chlorate, CIO ₃ -	H ₂ 0	KCIO ₃	125 mL 500 mL	ICCL031-125ML ICCL031-500ML
Chloride, Cl-	H ₂ 0	KCI	125 mL 500 mL	ICCL1-125ML ICCL1-500ML
Chlorite, CIO ₂ -	H ₂ 0	NaClO ₂	125 mL 500 mL	ICCL021-125ML ICCL021-500ML
Chromate, CrO ₄ -2	H_2^0	$(NH_4)_2 Cr_2O_7$	125 mL	ICCRO41-125ML
Citrate, C ₆ H ₅ O ₇ - ³	H ₂ 0	Citric acid	125 mL 500 mL	ICCIT1-125ML ICCIT1-500ML
Cyanide, NaCN	H_2^0	Sodium cyanide	20 mL	CN-1000-25-20ML
Fluoride, F-	H ₂ 0	NaF	125 mL 500 mL	ICF1-125ML ICF1-500ML
Formate, HCO ₂ -	H ₂ 0	Sodium formate	125 mL 500 mL	ICHC01-125ML ICHC01-500ML
Glutarate, C ₅ H ₆ O ₄ - ²	H_2^0	Glutaric acid	125 mL	ICGTR1-125ML
Glycolate, $C_2H_3O_3$ -	H_2^0	Glycolic acid	125 mL	ICGLY1-125ML
lodide, I-	H ₂ O / stabilizer	$NH_{\mathtt{4}}I$	125 mL 500 mL	ICI1-125ML ICI1-500ML
Lactate, C ₃ H ₅ O ₃ -	H_2^0	Lactic acid	125 mL	ICLCT1-125ML
Malate, C ₄ H ₄ O ₅ -2	H ₂ 0	Malic acid	125 mL	ICMLA1-125ML
Maleate, C ₄ H ₂ O ₄ - ²	H_2^0	Maleic acid	125 mL	ICMLE1-125ML
Malonate, C ₃ H ₂ O ₄ - ²	H ₂ 0	Malonic acid	125 mL	ICML01-125ML
Methanesulfonate, CH ₃ SO ₃ -	H_2^0	Methanesulfonic acid	125 mL	ICMSA1-125ML
Nitrate, NO ₃ -	H ₂ 0	NaNO ₃	125 mL 500 mL	ICN031-125ML ICN031-500ML
Nitrate as Nitrogen	H ₂ 0	NaNO ₃	125 mL 500 mL	ICNNO31-125ML ICNNO31-500ML
Nitrilotriacetate, NC ₆ H ₆ O ₆ - ³	H_2^0	Nitrilotriacetic acid	125 mL	ICNTA1-125ML
Nitrite, NO ₂ -	H ₂ 0	NaNO ₂	125 mL 500 mL	ICNO21-125ML ICNO21-500ML
Nitrite as Nitrogen	H ₂ 0	NaNO ₂	125 mL 500 mL	ICNN021-125ML ICNN021-500ML

ANION STANDARDS

Custom anion standards are available upon request.

1,000 µg/mL

ANALYTE	MATRIX	STARTING MATERIAL	VOLUME	CATALOG #
Oxalate, C ₂ O ₄ - ²	H ₂ O	Sodium oxalate	125 mL 500 mL	ICOXA1-125ML ICOXA1-500ML
Perchlorate, ClO ₄ -	H ₂ 0	KCIO ₄	125 mL 500 mL	ICCLO41-125ML ICCLO41-500ML
Phosphate, PO ₄ -3	H ₂ 0	$NH_4H_2PO_4$	125 mL 500 mL	ICP041-125ML ICP041-500ML
Phosphate as Phosphorus	H ₂ 0	$NH_4H_2PO_4$	125 mL 500 mL	ICPP041-125ML ICPP041-500ML
Phthalate, C ₆ H ₄ (CO ₂) ₂ - ²	H ₂ 0	Potassium hydrogen phthalate	125 mL	ICKHP1-125ML
Propionate, C ₂ H ₅ CO ₂ -	H_2^0	Sodium propionate	125 mL	ICOPR1-125ML
Succinate, C ₄ H ₄ O ₄ - ²	H_2^0	Succinic acid	125 mL	ICSCC1-125ML
Sulfate, SO ₄ - ²	H ₂ 0	K_2SO_4	125 mL 500 mL	ICSO41-125ML ICSO41-500ML
Tartrate, C ₄ H ₄ O ₆ - ²	H_2^0	Tartaric acid	125 mL	ICTRTR1-125ML
Thiocyanate, SCN-	H ₂ O	KSCN	125 mL	ICSCN1-125ML
Thiosulfate, S ₂ O ₃ - ²	H ₂ 0	Sodium thiosulfate	125 mL 500 mL	ICS2031-125ML ICS2031-500ML

Custom anion standards are available upon request.

10,000 μg/mL

ANALYTE	MATRIX	STARTING MATERIAL	VOLUME	CATALOG #
Chloride, Cl-	H ₂ 0	KCI	125 mL 500 mL	ICCL10-125ML ICCL10-500ML
Sulfate, SO ₄ -2	H ₂ 0	K_2SO_4	125 mL 500 mL	ICSO410-125ML ICSO410-500ML

Custom anion standards are available upon request.

100 ppm

ANALYTE	MATRIX	STARTING MATERIAL	VOLUME	CATALOG #
Nitrite, NO ₃ -	H ₂ 0	100	125 mL	ICN02-100PPM-125ML

CATION STANDARDS

Custom cation standards are available upon request.

ANALYTE	MATRIX	STARTING MATERIAL	VOLUME	CATALOG #
3 -Methoxypropylamine $\mathrm{CH_3O(CH_2)_3NH_2}$	HCI	3-Methoxypropylamine	125 mL	ICMPA1-125ML
Ammonium, NH ₄ +	H ₂ 0	NH ₄ CI	125 mL 500 mL	ICNH41-125ML ICNH41-500ML
Ammonium as Nitrogen	H ₂ O	NH ₄ Cl	125 mL 500 mL	ICNNH41-125ML ICNNH41-500ML
Barium, Ba⁺²	HNO ₃	Ba(NO ₃) ₂	125 mL	ICBA1-125ML
Calcium, Ca+2	HNO ₃	CaO	125 mL 500 mL	ICCA1-125ML ICCA1-500ML
Cesium, Cs ⁺	HNO ₃	CsNO ₃	125 mL	ICCS1-125ML
Diethanolamine, (HOCH ₂ CH ₂) ₂ NH	H ₂ 0	Diethanolamine	125 mL	ICDEA1-125ML
Dimethylamine, $NH(CH_3)_2$	нсі	Dimethylamine	125 mL	ICDMA1-125ML
Lithium, Li ⁺	HNO ₃	$\text{Li}_{2}\text{CO}_{3}$	125 mL	ICLI1-125ML
Magnesium, Mg ⁺²	HNO ₃	Mg metal	125 mL 500 mL	ICMG1-125ML ICMG1-500ML
Monoethanolamine, HOCH ₂ CH ₂ NH ₂	H ₂ O	Monoethanolamine	125 mL 500 mL	ICMEA1-125ML ICMEA1-500ML
Monomethylamine, NH ₂ CH ₃	HCI	Monomethylamine	125 mL	ICMMA1-125ML
Potassium, K⁺	HNO ₃	KNO ₃	125 mL 500 mL	ICK1-125ML ICK1-500ML
Rubidium, Rb ⁺	HNO ₃	RbNO ₃	125 mL	ICRB1-125ML
Sodium, Na ⁺	HNO ₃	$\mathrm{Na_2CO_3}$	125 mL 500 mL	ICNA1-125ML ICNA1-500ML
Strontium, Sr+2	HNO ₃	SrCO ₃	125 mL	ICSR1-125ML
Tetramethylammonium, N ⁺ (CH ₃) ₄	H ₂ 0	Tetramethylammonium hydroxide	125 mL	ICTMAH1-125ML
Triethanolamine, (HOCH ₂ CH ₂) ₃ N	H ₂ 0	Triethanolamine	125 mL	ICTEA1-125ML
Triethylamine, (CH ₃ CH ₂) ₃ N	HCI	Triethylamine	125 mL	ICTA1-125ML
Trimethylamine, $(CH_3)_3N$	HCI	Trimethylamine	125 mL	ICTMA1-125ML

Anion Calibration Standard			
IC-FAS-1A	IC-FAS-1A Matrix: H ₂ O		x: H ₂ 0
IC-FAS-1A-125ML IC-FAS-1A-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Br-	100	NO ₂ -	100
CI-	30	PO ₄ -3	150
F-	20	SO ₄ -2	150
NO ₃ -	100		

For anion analysis of water samples by ion chromatography (IC). Contains 7 "common anions" as defined by EPA and Standard Methods.

Cation Calibration Standard			
IC-SCS1	0	Matrix: HNO ₃	
IC-SCS1-125ML		Volume: 125 mL	
Analyte	μg/mL	Analyte	μg/mL
Ca ⁺²	1,000	Mg ⁺²	200
K ⁺	200	Na⁺	200
Li*	50	NH ₄ ⁺	400

Used for daily calibration.

For cation analysis of water samples by ion chromatography (IC)

Cation Calibration Standard			
IV-STOCK-	7	Matrix: HNO ₃	
IV-STOCK-7-125ML IV-STOCK-7-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Ba ⁺²	100	Mn ⁺²	100
Ca ⁺²	100	Na⁺	100
K ⁺	100	NH ₄ ⁺	100
Li ⁺	100	Sr ⁺²	100
Mq ⁺²	100		

Used for daily calibration.

For use as a certified reference standard in ion chromatography (IC) applications.

Anion Calibration Standard			
IV-STOCK-59		Matrix: H ₂ 0	
IV-STOCK-59-125ML IV-STOCK-59-500ML		Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	Analyte	μg/mL
Br-	1000	NO ₂ -	1000
CI-	1000	PO ₄ -3	1000
F-	1000	SO ₄ -2	1000
NO,-	1000		

For use as a certified reference standard in ion chromatography (IC) applications.

Anion Mix A		
IV-STOCK-61	Matrix: H ₂ O	
IV-STOCK-61-125ML IV-STOCK-61-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	Range	
Br-	20	
F-	10	
NO ₂ -	20	
\$0 ₄ -2	30	
CI-	20	
NO ₃ -	20	
PO ₄ -3	30	

For use as a certified reference standard in ion chromatography (IC) applications.

Cation Mix B		
IV-STOCK-62	Matrix: H ₂ 0	
IV-STOCK-62-125ML Volume: 125 mL		
Analyte	Range	
Ca	2.0	
K	2.5	
Li	0.2	
Mg	2.0	
Na	1.5	
NH ₄ ⁺	1.5	

For use as a certified reference standard in ion chromatography (IC) applications.

Common Multi-Ion Standards

MULTI-ION STANDARDS

Anion Mix 4		
IV-STOCK-63	Matrix: H ₂ 0	
IV-STOCK-63-125ML	Volume: 125 mL	
Analyte	Range	
Br-	40	
F-	20	
NO ₂ -	40	
CI-	40	
NO ₃ -	40	
\$0 ₄ -2	40	

For use as a certified reference standard in ion chromatography (IC) applications.

Anion Mix 5		
IV-STOCK-64	Matrix: H ₂ 0	
IV-STOCK-64-125ML IV-STOCK-64-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	Range	
Br-	50	
CI-	50	
F	25	
NO ₃ -	50	
NO ₂ -	50	
PO ₄ -3	50	
\$0 ₄ -²	50	

For use as a certified reference standard in ion chromatography (IC) applications.

Custom eluent concentrates are available upon request. All Eluents supplied with Product Information Sheet.

0.18 M Sodium Carbonate/0.17 M Sodium Bicarbonate			
ELUENT1817-100ML ELUENT1817-500ML	Volume: 100 mL Volume: 500 mL	Matrix: H ₂ 0 Dilution: 1:100	
For preparation of 1.8 mM ${\rm CO_3}^2$ / 1.7 mM ${\rm HCO_3}^2$ eluent.			

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate (100x); To prepare 1.8 mM carbonate/1.7 mM bicarbonate eluent for IC applications; ISO 17034 Reference Material.

0.35 M Sodium Carbonate/0.10 M Sodium Bicarbonate			
ELUENT3510-100ML ELUENT3510-500ML	Volume: 100 mL Volume: 500 mL	Matrix: H ₂ 0 Dilution: 1:100	
For preparation of 3.5 mM ${\rm CO_3}^2$ / 1.0 mM ${\rm HCO_3}$ - eluent.			

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate (100x); To prepare 3.5 mM carbonate/1.0 mM bicarbonate eluent for IC applications; ISO 17034 Reference Material.

0.45 M Sodium Carbonate/0.14 M Sodium Bicarbonate			
ELUENT4514-500ML	Volume: 500 mL	Matrix: H ₂ 0 Dilution: 1:100	
For preparation of 3.5 mM CO ₃ -2 / 1.0 mM HCO ₃ - eluent.			

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate (100x); To prepare 3.5 mM carbonate/1.0 mM bicarbonate eluent for IC applications; ISO 17034 Reference Material.

0.5 M Sodium Bicarbonate		
BICARB-100ML BICARB-500ML	Volume: 100 mL Volume: 500 mL	Matrix: H ₂ 0 Dilution: 1:100
For preparation of various CO ₃ ⁻² / HCO ₃ - eluents.		

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate; To prepare carbonate/bicarbonate eluent for IC applications; ISO 17034 Reference Material.

CARB-100ML Volume: 100 mL Matrix: H₂0 CARB-500ML Volume: 500 mL Dilution: 1:100 For preparation of various CO₃² / HCO₃- eluents.

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate; To prepare carbonate/bicarbonate eluent for IC applications; ISO 17034 Reference Material; Supplied with Product Information Sheet.

1.8 M Methanesulfonic Acid		
MSAELUENT-100ML MSAELUENT-500ML	Volume: 100 mL Volume: 500 mL	Matrix: H ₂ 0 Dilution: 1:100
For preparation of 18 mM CH ₃ SO ₃ H eluent for analyzing cations.		

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate (100x); To prepare 18 mM methanesulfonic acid eluent for IC applications; ISO 17034 Reference Material; Supplied with Product Information Sheet.

300.0 Rev. 2.1 Part A / 300.1 Part A Custom EPA standards are available upon request.

0.18 M Sodium Carbonate/0.17 M Sodium Bicarbonate		
ELUENT1817-100ML	Volume: 100 mL	Matrix: H ₂ 0
ELUENT1817-500ML	Volume: 500 mL	Dilution 1:100

For preparation of 1.8 mM CO_3^{-2} / 1.7 mM HCO_3^{-} eluent.

This solution is a reagent and is not intended to be used as a certified reference material. Concentrate (100x); To prepare 1.8 mM carbonate/1.7 mM bicarbonate eluent for IC applications; ISO 17034 Reference Material; Supplied with Product Information Sheet.

Calibration Standard				
300-CAL-A-1 300-CAL-A-5		Volume: 125 mL Volume: 500 mL		atrix: H ₂ 0 n 1:10 to 1:100
Analyte	μg/mL	Analyte		μg/mL
Br-	100	Nitrite as Nitroge	n	30
CI-	30	Nitrate as Nitroge	n	25
F-	20	Phosphate as Phosph	orus	50
\$0 ₄ -2	150			

For use as ion chromatography calibration standard in EPA Method 300.0. Also suitable for use as common anions standard in EPA Method 300.1.

Dichloroacetate Standard			
ICDCA-S-125ML ICDCA-S-500ML	Volume: 125 mL Volume: 500 mL Matrix: H ₂ 0		Matrix: H ₂ 0
Analyte			μg/mL
Cl ₂ HC ₂ O ₂ -			500

For use as a surrogate analyte.

For use as a surrogate analyte in ion chromatography (IC) analysis.

300.0 Rev. 2.1 Part A / 300.1 Part A Custom EPA standards are available upon request.

Laboratory Fortification Stock Standard				
300-LFS-A-125ML				atrix: H ₂ 0 1:100 to 1:1,000
Analyte	μg/mL	Analyte		μg/mL
Br-	1,000	Nitrite as Nitroge	n	300
CI-	300	Nitrate as Nitroge	n	300
F-	200	Phosphate as Phosph	orus	500
SO ₄ -2	1,500			

This standard is used to prepare the Laboratory Fortified Blank and the Laboratory Fortified Sample Matrix

For use as ion chromatography laboratory fortified blank or fortified sample matrix solution in EPA Method 300.0. Also suitable for use as common anions fortified blank or fortified sample matrix solution in EPA Method 300.1.

QC Standard/Instrument Performance Check [†]				
QCP-QCS-5-125ML		Volume: 125 mL M Dilutio		atrix: H ₂ 0 n 1:10 to 1:100
Analyte	μg/mL	Analyte µg/mL		μg/mL
Br-	50	Nitrite as Nitroge	n	15
CI-	15	Nitrate as Nitroge	n	10
F-	10	Phosphate as Phosphorus 25		25
\$0 ₄ -2	75	†Manufactured from in-house Second Source concentrates.		

Can be used to prepare the QC Sample or the IPC Solution.

For use as a general ion chromatogrpahy quality control standard

300.1 Part B Custom EPA standards are available upon request.

Bromate		
ICBRO31	Matrix: H ₂ 0	
ICBR031-125ML ICBR031-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
BrO ₃ -	1,000	

Chlorate		
Matrix: H ₂ 0		
Volume: 125 mL Volume: 500 mL		
μg/mL		
1,000		

Bromide		
ICBR1	Matrix: H ₂ 0	
ICBR1-125ML ICBR1-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
Br-	1,000	

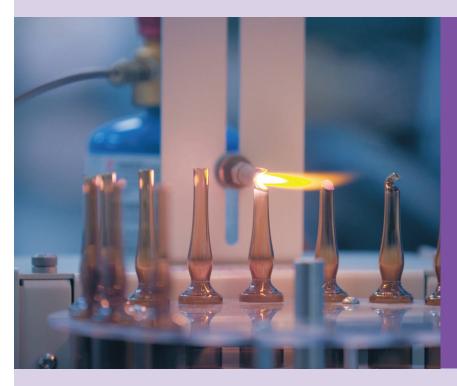
Dichloroacetate Standard		
ICDCA-S Matrix: H ₂ 0		
ICDCA-S-125ML ICDCA-S-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
Cl ₂ HC ₂ O ₂ -	500	

For use as a surrogate analyte.

Chlorite		
ICCL021	Matrix: H ₂ 0	
ICCL021-125ML ICCL021-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
CIO ₂ -	1,000	

NOTE: Contains less than 10ppm $\mathrm{CIO_3}^{\text{-}}$.

Custom EPA standards are available upon request.


1,400 µmhos/cm Conductivity at 25°C		
CON1400-25 Matrix: H ₂ 0		
CON1400-25-125ML CON1400-25-500ML CON1400-25-1L	Volume: 125 mL Volume: 500 mL Volume: 1 L	

For the calibration of analytical instruments and validation of analytical methods as appropriate. Preserved with antimicrobial agent.

Perchlorate		
ICCLO41 Matrix: H ₂ 0		
ICCLO41-125ML ICCLO41-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
CIO ₄ -	1,000	

ATOMIC ABSORPTION

If Atomic Absorption (AA) is your technique of choice, we think you'll appreciate our full line of AA standards.

Contents

Single-Element Standards	.95
Modifiers, Buffers & Releasing Agents	98
Instrument Cross-Reference Table	35

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Assayed by validated procedures

SINGLE-ELEMENT STANDARDS

For the calibration of analytical instruments and validation of analytical methods as appropriate.

			, 13
ANALYTE	MATRIX	VOLUME	CATALOG #
Aluminum, Al	HNO ₃	125 mL 500 mL	AAAL1-125ML AAAL1-500ML
Antimony, Sb	HNO ₃ / Tartaric Acid	125 mL 500 mL	AASB1-125ML AASB1-500ML
Arsenic, As	HNO ₃	125 mL 500 mL	AAAS1-125ML AAAS1-500ML
Barium, Ba	HNO ₃	125 mL 500 mL	AABA1-125ML AABA1-500ML
Beryllium, Be	HNO ₃	125 mL 500 mL	AABE1-125ML AABE1-500ML
Bismuth, Bi	HNO ₃	125 mL 500 mL	AABI1-125ML AABI1-500ML
Boron, B	$\mathrm{NH_4OH}$	125 mL 500 mL	AAB1-125ML AAB1-500ML
Cadmium, Cd	HNO ₃	125 mL 500 mL	AACD1-125ML AACD1-500ML
Calcium, Ca	HNO ₃	125 mL 500 mL	AACA1-125ML AACA1-500ML
Cerium, Ce	HNO ₃	125 mL 500 mL	AACE1-125ML AACE1-500ML
Cesium, Cs	HNO ₃	125 mL 500 mL	AACS1-125ML AACS1-500ML
Chromium, Cr	HNO ₃	125 mL 500 mL	AACR1-125ML AACR1-500ML
Cobalt, Co	HNO ₃	125 mL 500 mL	AACO1-125ML AACO1-500ML
Copper, Cu	HNO ₃	125 mL 500 mL	AACU1-125ML AACU1-500ML
Dysprosium, Dy	HNO ₃	125 mL 500 mL	AADY1-125ML AADY1-500ML
Erbium, Er	HNO ₃	125 mL 500 mL	AAER1-125ML AAER1-500ML
Europium, Eu	HNO ₃	125 mL 500 mL	AAEU1-125ML AAEU1-500ML
Gadolinium, Gd	HNO ₃	125 mL 500 mL	AAGD1-125ML AAGD1-500ML
Gallium, Ga	HNO ₃	125 mL 500 mL	AAGA1-125ML AAGA1-500ML
Germanium, Ge	HNO ₃ / HF	125 mL 500 mL	AAGE1-125ML AAGE1-500ML
Gold, Au	HCI	125 mL 500 mL	AAAU1-125ML AAAU1-500ML
Hafnium, Hf	HNO ₃ / HF	125 mL 500 mL	AAHF1-125ML AAHF1-500ML
Holmium, Ho	HNO_3	125 mL 500 mL	AAH01-125ML AAH01-500ML
Indium, In	HNO ₃	125 mL 500 mL	AAIN1-125ML AAIN1-500ML

SINGLE-ELEMENT STANDARDS

ANALYTE	MATRIX	VOLUME	CATALOG #
		125 mL	AAIR1-125ML
Iridium, Ir	HCI	500 mL	AAIR1-500ML
Iron, Fe	HNO ₃	125 mL 500 mL	AAFE1-125ML AAFE1-500ML
Lanthanum, La	HNO ₃	125 mL 500 mL	AALA1-125ML AALA1-500ML
Lead, Pb	HNO ₃	125 mL 500 mL	AAPB1-125ML AAPB1-500ML
Lithium, Li	HNO ₃	125 mL 500 mL	AALI1-125ML AALI1-500ML
Lutetium, Lu	HNO ₃	125 mL 500 mL	AALU1-125ML AALU1-500ML
Magnesium, Mg	HNO ₃	125 mL 500 mL	AAMG1-125ML AAMG1-500ML
Manganese, Mn	HNO ₃	125 mL 500 mL	AAMN1-125ML AAMN1-500ML
Mercury, Hg	HNO ₃	125 mL 500 mL	AAHG1-125ML AAHG1-500ML
Molybdenum, Mo	NH₄OH	125 mL 500 mL	AAMO1-125ML AAMO1-525ML
Neodymium, Nd	HNO ₃	125 mL 500 mL	AAND1-125ML AAND1-500ML
Nickel, Ni	HNO ₃	125 mL 500 mL	AANI1-125ML AANI1-500ML
Niobium, Nb	HNO ₃ / HF	125 mL 500 mL	AANB1-125ML AANB1-500ML
Palladium, Pd	HCI	125 mL 500 mL	AAPD1-125ML AAPD1-500ML
Phosphorus, P	$\rm H_2O$	125 mL 500 mL	AAP1-125ML AAP1-500ML
Platinum, Pt	HCI	125 mL 500 mL	AAPT1-125ML AAPT1-500ML
Potassium, K	HNO ₃	125 mL 500 mL	AAK1-125ML AAK1-500ML
Praseodymium, Pr	HNO ₃	125 mL 500 mL	AAPR1-125ML AAPR1-500ML
Rhenium, Re	HNO ₃	125 mL 500 mL	AARE1-125ML AARE1-500ML
Rhodium, Rh	HCI	125 mL 500 mL	AARH1-125ML AARH1-500ML
Rubidium, Rb	HNO ₃	125 mL 500 mL	AARB1-125ML AARB1-500ML
Ruthenium, Ru	HCI	125 mL 500 mL	AARU1-125ML AARU1-500ML
Samarium, Sm	HNO ₃	125 mL 500 mL	AASM1-125ML AASM1-500ML
Scandium, Sc	HNO ₃	125 mL 500 mL	AASC1-125ML AASC1-500ML

SINGLE-ELEMENT STANDARDS

ANALYTE	MATRIX	VOLUME	CATALOG #
Selenium, Se	HNO ₃	125 mL 500 mL	AASE1-125ML AASE1-500ML
Silicon, Si	HNO ₃ / HF	125 mL 500 mL	AASI1-125ML AASI1-500ML
Silver, Ag	HNO ₃	125 mL 500 mL	AAAG1-125ML AAAG1-500ML
Sodium, Na	HNO ₃	125 mL 500 mL	AANA1-125ML AANA1-500ML
Strontium, Sr	HNO ₃	125 mL 500 mL	AASR1-125ML AASR1-500ML
Sulfur, S	H ₂ 0	125 mL 500 mL	AAS1-125ML AAS1-500ML
Tantalum, Ta	HNO ₃ / HF	125 mL 500 mL	AATA1-125ML AATA1-500ML
Tellurium, Te	HCI	125 mL 500 mL	AATE1-125ML AATE1-500ML
Terbium, Tb	HNO ₃	125 mL 500 mL	AATB1-125ML AATB1-500ML
Thallium, Tl	HNO ₃	125 mL 500 mL	AATL1-125ML AATL1-500ML
Thorium, Th	HNO ₃	125 mL 500 mL	AATH1-125ML AATH1-500ML
Thulium, Tm	HNO ₃	125 mL 500 mL	AATM1-125ML AATM1-500ML
Tin, Sn	HNO ₃ / HF	125 mL 500 mL	AASN1-125ML AASN1-500ML
Titanium, Ti	HNO ₃ / HF	125 mL 500 mL	AATI1-125ML AATI1-500ML
Tungsten, W	HNO ₃ / HF	125 mL 500 mL	AAW1-125ML AAW1-500ML
Uranium, U	HNO ₃	125 mL 500 mL	AAU1-125ML AAU1-500ML
Vanadium, V	HNO ₃	125 mL 500 mL	AAV1-125ML AAV1-500ML
Ytterbium, Yb	HNO ₃	125 mL 500 mL	AAYB1-125ML AAYB1-500ML
Yttrium, Y	HNO ₃	125 mL 500 mL	AAY1-125ML AAY1-500ML
Zinc, Zn	HNO ₃	125 mL 500 mL	AAZN1-125ML AAZN1-500ML
Zirconium, Zr	HF	125 mL 500 mL	AAZR1-125ML AAZR1-500ML

MODIFIERS, BUFFERS & RELEASING AGENTS

Custom modifiers, buffers and releasing agents are available upon request.

1% Lanthanum Releasing Agent*			
LACB1 Matrix: HCl			
LACB1-500ML	Volume: 500 mL		
Analyte	μg/mL		
La	La 10,000		

Used as a releasing agent (primarily for Ca in the presence of phosphate).

2% Lithium Ionization Buffer*			
LINB2 Matrix: HNO ₃			
LINB2-125ML	Volume: 125 mL		
Analyte	μg/mL		
Li	20,000		

Supplies an excess of electrons to plasma/flame to minimize impact of ionization interferences.

1% Magnesium Nitrate Modifier*			
MM-MG-10 Matrix: H ₂ 0			
MM-MG-10-125ML Volume: 125 mL			
Analyte	μg/mL		
Mg(NO₃)₂ 10,000			

Used to change the volatility of the sample to prevent loss of analyte or to facilitate removal of interfering matrix components.

4% Phosphate Modifier*		
MM-P-40 Matrix: H ₂ 0		
MM-P-40-125ML Volume: 125 mL		
Analyte	μg/mL	
PO ₄ 40,000		

Used to change the volatility of the sample to prevent loss of analyte or to facilitate removal of interfering matrix components.

0.5% Palladium Modifier*			
MM-PD-5 Matrix: HNO ₃			
MM-PD-5-125ML Volume: 125 mL MM-PD-5-500ML Volume: 500 mL			
Analyte	μg/mL		
Pd 5,000			

Used to change the volatility of the sample to prevent loss of analyte or to facilitate removal of interfering matrix components.

1% Palladium Modifier*		
MM-PD-10 Matrix: HNO ₃		
MM-PD-10-125ML Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	
Pd	10,000	

Used to change the volatility of the sample to prevent loss of analyte or to facilitate removal of interfering matrix components.

0.3% Palladium / 0.2% Magnesium Nitrate Modifier*			
MM-PDMG	-32	Matrix: HNO ₃	
MM-PDMG-32-125ML MM-PDMG-32-500ML			: 125 mL : 500 mL
Analyte	μg/mL	Analyte	μg/mL
$Mg(NO_3)_2$	2,000	Pd	3,000

Used to change the volatility of the sample to prevent loss of analyte or to facilitate removal of interfering matrix components.

^{*}Not to be used as a calibration standard, for analytical reagent use only. ISO 17034 Reference Material; Supplied with Product Information Sheet.

WATER QC

Our priority is your total satisfaction. Should you ever have a problem with any standard, Water QC or otherwise, let us know. We'll immediately investigate the problem by testing a retained sample of your solution. If the error is on our end, you'll be offered a full refund or a free replacement — your choice.

Contents

Water Standards	100
Need a Custom CRM?	18

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- **✓** Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ Assayed by optimal validated procedures

WATER STANDARDS

Custom potable water standards for certain products are available upon request.

Bromate		
ICBR031	Matrix: H ₂ O	
ICBR031-125ML ICBR031-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
BrO ₃ -	1,000	

Chlorate		
ICCL031	Matrix: H ₂ 0	
ICCL031-125ML ICCL031-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
CIO ₃ -	1,000	

Bromide		
ICBR1 Matrix: H ₂ 0		
ICBR1-125ML ICBR1-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
Br-	1,000	

Chlorite		
ICCL021 Matrix: H ₂ 0		
ICCL021-125ML ICCL021-500ML	Volume: 125 mL Volume: 500 mL	
Analyte	μg/mL	
CIO ₂ -	1,000	

NOTE: Contains less than 10ppm ${\rm CIO_3}^{\circ}$.

1,000 μg/mL Total Cyanide		
CN-1000-25-20ML	Volume: 20 mL Matrix: H ₂ 0	
Analyte	μg/mL	
CN-	1,000	

For the determination of cyanide in aqueous samples.

Mercury Standard		
MSHG-1PPM Matrix: HCI		
MSHG-1PPM-125ML Volume: 125 mL Volume: 500 mL		
Analyte	μg/mL	
Hg	1	

Custom wastewater standards are available upon request.

ANALYTE	MATRIX	STARTING MATERIAL	μg/ML	VOLUME	CATALOG #
Total Organic Carbon, TOC	H ₂ 0	KHP	1,000	125 mL	TOCKHP1-125ML
	-			500 ml	TOCKHP1-500MI

WET CHEMISTRY

Each pH standard is compatible with your instrumentation and meets all requirements for calibration by a true Certified Reference Material. Each standard is traceable to a NIST SRM and is engineered for long-term stability. Manufactured under our ISO 17034 accreditation, each pH standard comes with a CoA and a temperature chart for your convenience. Each product is packaged in our TCT technology with a multi-year shelf life and a one-year* expiration date from opening. All product labels and SDS are GHS-compliant.

Contents

Wet Chemical Standards
Conductivity Standards 102
pH Standards and Colored pH Standards 103
Cyanide Standards 104
pH Buffers Specially Formulated
for USP <791> 105
Sample Preparation
Dissolution Reagents & Stabilizers 106
Fusion Fluxes
Certified Titrants

At times, Wet Chemistry involves some difficult and unusual techniques. If you find yourself in a bind, give us a call. One of our experts will be happy to assist you. Plus, we offer analytical advice and in-depth technical guides on our website, inorganic ventures.com.

- ✓ Up to five-year shelf life
- ✓ Traceable to NIST SRMs
- ✓ Produced under ISO 9001
- ✓ Produced under ISO 17025
- ✓ Produced under ISO 17034
- ✓ Assayed by optimal validated procedures

* For most products.

WET CHEMICAL STANDARDS

For the calibration of analytical instruments and validation of analytical methods as appropriate. Preserved with antimicrobial agent. Custom conductivity standards are available upon request.

2 µmhos/cm Conductivity at 25°C		
Matrix: H ₂ 0		
CON2-25-125ML Volume: 125 mL		
CON2-25-500ML Volume: 500 mL		

5 μmhos/cm Conductivity at 25°C		
Matrix: H ₂ 0		
CON5-25-125ML Volume: 125 mL		
CON5-25-500ML Volume: 500 mL		

10 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON10-25-125ML	Volume: 125 mL
CON10-25-500ML	Volume: 500 mL

84 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON84-25-125ML	Volume: 125 mL
CON84-25-500ML	Volume: 500 mL
CON84-25-1L	Volume: 1 L

100 µmhos/cm Conductivity at 25°C		
Matrix: H ₂ 0		
CON100-25-125ML	Volume: 125 mL	
CON100-25-500ML	Volume: 500 mL	
CON100-25-1L	Volume: 1 L	

147 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON147-25-125ML	Volume: 125 mL
CON147-25-500ML	Volume: 500 mL
CON147-25-1L	Volume: 1 L

500 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON500-25-125ML	Volume: 125 mL
CON500-25-500ML	Volume: 500 mL
CON500-25-1L	Volume: 1 L

1,000 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON1000-25-125ML	Volume: 125 mL
CON1000-25-500ML	Volume: 500 mL
CON1000-25-1L	Volume: 1 L

1,200 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON1200-25-125ML	Volume: 125 mL
CON1200-25-500ML	Volume: 500 mL
CON1200-25-1L	Volume: 1 L

1,400 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON1400-25-125ML	Volume: 125 mL
CON1400-25-500ML	Volume: 500 mL
CON1400-25-1L	Volume: 1 L

1,413 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON1413-25-125ML	Volume: 125 mL
CON1413-25-500ML	Volume: 500 mL
CON1413-25-1L	Volume: 1 L

1,430 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON1430-25-125ML	Volume: 125 mL
CON1430-25-500ML	Volume: 500 mL
CON1430-25-1L	Volume: 1 L

10,000 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON10000-25-125ML	Volume: 125 mL
CON10000-25-500ML	Volume: 500 mL
CON10000-25-1L	Volume: 1 L

100,000 µmhos/cm Conductivity at 25°C	
Matrix: H ₂ 0	
CON100000-25-125ML	Volume: 125 mL
CON100000-25-500ML	Volume: 500 mL
CON100000-25-1L	Volume: 1 L

WET CHEMICAL STANDARDS

For the calibration of analytical instruments and validation of analytical methods as appropriate. Preserved with antimicrobial agent. Custom pH standards are available upon request.

pH 1.68	
Potassium tetroxalate	
PH-1.68-250ML	Volume: 250 mL
PH-1.68-500ML	Volume: 500 mL
PH-1.68-1L	Volume: 1 L
PH-1.68-4L	Volume: 4 L

pH 5	
Potassium acid phthalate and sodium hydroxide	
PH-5-250ML Volume: 250 mL	
PH-5-500ML	Volume: 500 mL
PH-5-1L	Volume: 1 L
PH-5-4L	Volume: 4 L

pH 2	
Potassium chloride and hydrochloric acid	
PH-2-250ML	Volume: 250 mL
PH-2-500ML	Volume: 500 mL
PH-2-1L	Volume: 1 L
PH-2-4L	Volume: 4 L
PH-2-10L	Volume: 10 L

pH 6	
Monobasic potassium phosphate and sodium hydroxide	
PH-6-250ML Volume: 250 mL	
PH-6-500ML	Volume: 500 mL
PH-6-1L	Volume: 1 L
PH-6-4L	Volume: 4 L
PH-6-10L	Volume: 10 L

pH 3	
Potassium acid phthalate and hydrochloric acid	
PH-3-250ML Volume: 250 mL	
PH-3-500ML	Volume: 500 mL
PH-3-1L	Volume: 1 L
PH-3-4L	Volume: 4 L
PH-3-10L	Volume: 10 L

pH 6.86	
Potassium phosphate and dibasic sodium phosphate	
PH-6.86-250ML	Volume: 250 mL
PH-6.86-500ML	Volume: 500 mL
PH-6.86-1L	Volume: 1 L
PH-6.86-4L	Volume: 4 L
PH-6.86-10L	Volume: 10 L

pH 4	
Potassium acid phthalate	
PH-4-250ML Volume: 250 mL	
PH-4-500ML	Volume: 500 mL
PH-4-1L	Volume: 1 L
PH-4-4L	Volume: 4 L
PH-4-10L	Volume: 10 L

pH 7	
Monobasic potassium phosphate and sodium hydroxide	
PH-7-250ML	Volume: 250 mL
PH-7-500ML	Volume: 500 mL
PH-7-1L	Volume: 1 L
PH-7-4L	Volume: 4 L
PH-7-10L	Volume: 10 L

pH 4 RED	
Potassium acid phthalate	
PHRED-4-250ML	Volume: 250 mL
PHRED-4-500ML	Volume: 500 mL
PHRED-4-1L	Volume: 1 L
PHRED-4-4L	Volume: 4 L
PHRED-4-10L	Volume: 10 L

pH 7 YELLOW	
Monobasic potassium phosphate and sodium hydroxide	
PHYELLOW-7-250ML Volume: 250 mL	
PHYELLOW-7-500ML	Volume: 500 mL
PHYELLOW-7-1L	Volume: 1 L
PHYELLOW-7-4L	Volume: 4 L
PHYELLOW-7-10L	Volume: 10 L

WET CHEMICAL STANDARDS

pH 8	
Monobasic potassium phosphate and sodium hydroxide	
PH-8-250ML	Volume: 250 mL
PH-8-500ML	Volume: 500 mL
PH-8-1L	Volume: 1 L
PH-8-4L	Volume: 4 L
PH-8-10L	Volume: 10 L

pH 9	
Boric acid, potassium chloride and sodium hydroxide	
PH-9-250ML	Volume: 250 mL
PH-9-500ML	Volume: 500 mL
PH-9-1L	Volume: 1 L
PH-9-4L	Volume: 4 L
PH-9-10L	Volume: 10 L

pH 9.18	
Sodium borate decahydrate	
PH-9.18-250ML Volume: 250 mL	
PH-9.18-500ML	Volume: 500 mL
PH-9.18-1L	Volume: 1 L

pH 10	
Sodium bicarbonate and sodium carbonate	
PH-10-250ML Volume: 250 mL	
PH-10-500ML	Volume: 500 mL
PH-10-1L	Volume: 1 L
PH-10-4L	Volume: 4 L
PH-10-10L	Volume: 10 L

pH 10 BLUE	
Sodium bicarbonate and sodium carbonate	
PHBLUE-10-250ML Volume: 250 mL	
PHBLUE-10-500ML	Volume: 500 mL
PHBLUE-10-1L Volume: 1 L	
PHBLUE-10-4L	Volume: 4 L
PHBLUE-10-10L	Volume: 10 L

pH 11	
Dibasic sodium phosphate and sodium hydroxide	
PH-11-250ML Volume: 250 mL	
PH-11-500ML	Volume: 500 mL
PH-11-1L	Volume: 1 L
PH-11-4L	Volume: 4 L
PH-11-10L	Volume: 10 L

pH 12	
Potassium chloride and sodium hydroxide	
PH-12-250ML Volume: 250 mL	
PH-12-500ML	Volume: 500 mL
PH-12-1L	Volume: 1 L
PH-12-4L	Volume: 4 L
PH-12-10L	Volume: 10 L

pH 12.47	
Sodium hydroxide and potassium chloride	
PH-12.47-250ML Volume: 250 mL	
PH-12.47-500ML Volume: 500 mL	
PH-12.47-1L	Volume: 1 L

Cyanide Standards

Custom cyanide standards are available upon request.

1,000 ug/mL Total Cyanide	
CN-1000-25-20ML	Volume: 20 mL Matrix: H ₂ 0
Analyte	μg/mL
CN-	1,000

Leave buffer preparation to the experts.

Your pH meter will thank you.

pH BUFFERS SPECIALLY FORMULATED FOR USP <791>

For analysts in the pharmaceutical industry tasked with maintaining proper pH meter calibration in accordance with USP <791>, Inorganic Ventures' CRMs deliver confidence, control, and support.

Our pH buffers are NIST-traceable and manufactured and tested under ISO 17034 and ISO 17025 guidelines. Each standard is accompanied by a detailed Certificate of Analysis (CoA), displaying certified values for multiple temperatures. In addition, these solutions are formulated to meet USP <791> specifications* and are ready to use right out of the bottle.

pH Buffer Features:

- NIST-traceable standards, certified within 5% of the nominal values and associated uncertainties of no more than 0.05 pH units.
- Packaged in Transpiration Control Technology (TCT) which guarantees scientific integrity for up to 5-years from the date of manufacture.
- Ready to use with no preparation required.

WE OFFER A COMPLETE LINE OF PH CALIBRATION STANDARDS, SUITABLE FOR CALIBRATION AS SPECIFIED IN USP <791>.

PRODUCT OFFERINGS	
pH-1.68	
pH-4.01	
pH-6.86	
pH-9.18	
pH-10.01	PH-9.18 http://doi.org/10.100
pH-12.45*	3 250 ± 0.073 20 0.020 ± 0.073 3 0.020 ± 0.073 3 0.020 ± 0.073 4 0.000 ± 0.073
To ensure solution stability, pH 12.45 is formulated using KCI/NaOH.	The process of the control of the co

Do you need a specific pH value not listed above or require a specific formulation?

We have the scientific expertise to refine formulations and address your specific needs. Simply contact IV for a custom quote or to learn about our complete line of pH buffer stock standards.

SAMPLE PREPARATION

Dissolution Reagents & Stabilizers

Dissolution Reagents are designed for the preparation and measurement of samples containing silica mixed with fluoride insoluble elements, including zeolites, alumina and/or silica based catalysts, sand, limestone, coal fly ash and talc.

These products permit the simple dissolution of silicates without additional equipment, and are designed for ICP measurement of Si and other elements using traditional glass-based sample introduction systems.

The following products are intended to be used together; UA-1 for sample dissolution and UNS-1 for neutralization and stabilization. Please see the article titled Elemental Analysis of Zeolites on our website for more information. Custom dissolution reagents for specific applications are available upon request, and please contact us for more information.

Acid Dissolution Reagent UA-1-500ML Volume: 500 mL Recommended for the dissolution of aluminosilicates,

such as zeolites.

Stabilizing Reagent	
UNS-1-500ML Volume: 500 mL	
Designed for use with UA-1.	

Don't see exactly what you're looking for?

Give us a call. Custom reference materials are our specialty.

CERTIFIED TITRANTS

These Certified Titrants are traceable to NIST and accredited to ISO 17034. Custom certified titrants are available upon request.

0.05M EDTA	
0.05M-EDTA-500ML	Matrix: H ₂ O Volume: 500 mL
0.05M EDTA, 500mL	

0.5M EDTA	
0.5M-EDTA-500ML	Matrix: H ₂ 0 Volume: 500 mL
0.5M EDTA, 500mL	

0.1M Hydrochloric Acid	
0.1M-HCL-500ML	Matrix: H ₂ 0 Volume: 500 mL
0.1M Hydrochloric Acid, 500mL	

1.0M Hydrochloric Acid			
1.0M-HCL-500ML Matrix: H ₂ 0 Volume: 500 mL			
1.0M Hydrochloric Acid, 500mL			

0.1M Nitric Acid		
0.1M-HN03-500ML Matrix: H ₂ O Volume: 500 mL		
0.1M Nitric Acid, 500mL		

1.0M Nitric Acid		
1.0M-HN03-500ML	Matrix: H ₂ O Volume: 500 mL	
1.0M Nitric Acid, 500mL		

0.1M Perchloric Acid		
0.1M-HCL04-500ML Matrix: H ₂ 0/0.1M HClO ₄ in Glacial Acetic Acid Volume: 500 mL		
0.1M Perchloric Acid, 500mL		

0.1N Silver Nitrate		
0.1N-AGNO3-500ML	Matrix: H ₂ O Volume: 500 mL	
0.1N Silver Nitrate, 500mL		

0.1M Sodium Hydroxide		
0.1M-NAOH-500ML Matrix: H ₂ O Volume: 500 mL		
0.1M Sodium Hydroxide, 500mL		

0.1N Sodium Thiosulfate		
0.1N-NA2S2O3-500ML	Matrix: H ₂ O Volume: 500 mL	
0.1N Sodium Thiosulfate 500 mL. Prepared and standardized according to USP specifications.		

1M Sodium Hydroxide		
1M-NAOH-500ML	Matrix: H ₂ O Volume: 500 mL	
1M Sodium Hydroxide, 500mL		

Reagents

WET CHEMISTRY REAGENTS

Blank & Rinse Solutions

Blank & Rinse solutions are prepared using double-distilled reagents and 18 megohm (M Ω) deionized water. They come packaged in ultra-clean LDPE bottles and are ready to use. Custom solutions are available upon request.

2% (v/v) Nitric Acid Rinse		
CLP-MS-RINSE Matrix: HNO ₃ Ultra Pure Dilution: Ready to Use		
CLP-MS-RINSE-125ML CLP-MS-RINSE-500ML	Volume: 125 mL Volume: 500 mL	

For use with	ICP-MS	Designed	for II MO	5 2 and	1 II MO5 3

5% (v/v) Nitric Acid Blank		
IV-ACID-BLANK Ultra Pure	Matrix: HNO ₃	
IV-ACID-BLANK-500ML IV-ACID-BLANK-1L	Volume: 500 mL Volume: 1 L	

Deionized Blank		
IV-DI-BLANK Matrix: H ₂ 0		
IV-DI-BLANK-500ML IV-DI-BLANK-1L	Volume: 500 mL Volume: 1 L	

Platinum Cobalt 500 CU APHA/Hazen Color Standard					
PT-CO Matrix: HCl					
PT-CO-500ML Volume: 500 mL					
Analyte μg/mL					
Pt 500					
Со	250				

Discrete Analyzer Reagents

Discrete Analyzer Reagents are packaged in LDPE bottles and are ready to use. These reagents are to be used on a Discrete Analyzer instrument for testing the analyte they are named after.

Chloride Discrete	Analyzer Reagent
DA-CL-COLOR	Matrix: 15% v/v Methanol Dilution: Ready to Use
DA-CL-COLOR-500ML	Volume: 500 mL

Sulfate Discrete Analyzer Reagent				
DA-SO4-TURB	Matrix: 0.5% HCl Dilution: Ready to Use			
DA-SO4-TURB-500ML	Volume: 500 mL			

o-Phosphate Discrete Analyzer Reagent 1				
DA-PO4-COLOR	Matrix: 9.1% H2SO4 Dilution: Ready to Use			
DA-P04-COLOR-500ML	Volume: 500 mL			

To be used in conjunction with DA-PO4-ASCORBIC.

o-Phosphate Discrete Analyzer Reagent 2					
DA-PO4-ASCORBIC	Matrix: H2O Dilution: Ready to Use				
DA-P04-ASCORBIC-500ML	Volume: 500 mL				

To be used in conjunction with DA-PO4-COLOR.

BY SUBJECT

Modifiers, Buffers, & Releasing Agents	98 95–97
Multi-Ion Standards	00_00
Single-Ion Standards	
Single-ton Standards	00-00
Buffers	
AA	98
ICP & ICP-MS	52
Calibration Blank & Rinse Solutions	66. 108
Cannabis Standards	
Cation Standards	
Multi-Ion Standards	89-90
Single-Ion Standards	
Conductivity Standards	
Continuing and Initial Calibration	
Verification Standards (CICV)	59 61 63
Contract Required Detection Limit	07, 01, 00
Standards (CRDL)	60
Contract Required Quantitation Limit	00
Standards (CRQL)	6.1
Cyanide Standards	04
Anion Standards	06
ICP & ICP-MS	
Water Standards	
Wet Chemistry	
wet chemistry	104
Dichloroacetate Standard	91. 93
Dissolution Reagents & Stabilizers	
2.000.4.0	
Eluents for Anions and Cations	90-91
EPA Methods	
200.7	66-75
200.8	
300.0	
300.1	
314.0	
1311	
6020	
ILM03.0	
ILMO4.0	
ILM05.2	
	03-00
ILM05.3	62 66
Toxicity Characteristic Leacheta Dragadura (TOLD)	63-66
Toxicity Characteristic Leachate Procedure (TCLP)	63-66 79
Toxicity Characteristic Leachate Procedure (TCLP) Fusion Fluxes	79
Toxicity Characteristic Leachate Procedure (TCLP) Fusion Fluxes	79
Toxicity Characteristic Leachate Procedure (TCLP) Fusion Fluxes	79
Toxicity Characteristic Leachate Procedure (TCLP) Fusion Fluxes	

Instrument Cross-Reference Table	
Instrument Performance Check	
Interference Check Standards (ICS)43, 60, 62, 6	
Internal Standards 43-44, 48, 52, 65, 7	7, 80, 82-83
Ion Chromatography Standards	
Multi-Ion Standards	89-90
Single-Ion Standards	86-88
Ionization Buffers	52 98
	02, 70
Laboratory Fortifying Stock Solutions	73
Matrix Modifiers	
Mercury Preservation Solution	77
Mercury Standard	77, 100
Modifiers	
Primary Certified Reference Materials (PCRM™)	17
pH Standards	
Calibration	102_104
Wet Chemistry	
wet chemistry	103-104
Quality Control Standards (QC)	
ICP & ICP-MS 68-6	
Ion Chromatography	92
Reagents	108
Releasing Agents	98
Sample Preparation	
Dissolution Reagents	106
Blank & Rinse Solutions	
Single-Ion Standards	
Soil Spike Standards	5, 80, 82-83
Total Organic Carbon (TOC)	100
Toxicity Characteristic Leachate	
Procedure Standard (TCLP)	79
Tuning Solutions41, 43-44, 49, 50-52, 65, 7	8, 81–82, 84
IICD (222) Flomental Impurities	
USP <232> - Elemental Impurities	FO F4
Compliance Standards	53-54
Water Standards	100
Water Spike Standards60, 62, 6	5, 81-82, 84
Wet Chemistry Standards	
Certified Titrants	107
Conductivity Standards	
Cyanide Standards	
Dissolution Reagents and Stabilizers	
pH Standards and Colored pH Standards	
Reagents	108

0.05M-EDTA-500ML	107	AACD1-500ML	95	AAPB1-125ML	96	AAZR1-500ML	97
0.5M-EDTA-500ML		AACE1-125ML		AAPB1-500ML		AGI-TS-1-125ML	
0.1M-HCL-500ML		AACE1-500ML		AAPD1-125ML		AGI-TS-1-500ML	
0.1M-HCLO4-500ML		AAC01-125ML		AAPD1-500ML		7.0	
0.1M-HN03-500ML		AAC01-500ML		AAPR1-125ML		BICARB-100ML	90
0.1M-NAOH-500ML		AACR1-125ML		AAPR1-500ML		BICARB-500ML	
0.1N-AGN03-500ML		AACR1-500ML		AAPT1-125ML		DIO/IIID GOOME	
1.0M-HCL-500ML		AACS1-125ML		AAPT1-500ML		CARB-100ML	01
1.0M-HN03-500ML		AACS1-500ML		AARB1-125ML		CARB-500ML	
1M-NOAH-500ML		AACU1-125ML		AARB1-500ML		CCS-1-125ML	
0.1N-NA2S2O3-500ML		AACU1-500ML		AARE1-125ML		CCS-1-500ML	
2007ICS-1-125ML		AACUCN-125ML		AARE1-125ML		CCS-2-125ML	
						CCS-4-125ML	
2007ICS-3-125ML		AACUCN-500ML		AARH1-125ML		CCS-4-125ML	
2007ICS-4-125ML		AADY1-125ML		AARH1-500ML			
2008CAL-1-125ML		AADY1-500ML		AARU1-125ML		CCS-5-125ML	
2008CAL-2-125ML		AAER1-125ML		AARU1-500ML		CCS-5-500ML	
2008CAL-2-500ML		AAER1-500ML		AAS1-125ML		CCS-6-125ML	
2008ISS-125ML		AAEU1-125ML		AAS1-500ML		CCS-6-500ML	
2008ISS-500ML		AAEU1-500ML		AASB1-125ML		CG6LI1-125ML	
2008TS-125ML		AAFE1-125ML		AASB1-500ML		CG6LI1-30ML	
300-CAL-A-125ML		AAFE1-500ML		AASC1-125ML		CGAG10-125ML	
300-CAL-A-500ML		AAGA1-125ML		AASC1-500ML		CGAG10-500ML	
300-LFS-A-125ML		AAGA1-500ML		AASE1-125ML		CGAG1-125ML	
6020CAL-1-125ML	80, 81, 83	AAGD1-125ML		AASE1-500ML	97	CGAG1-30ML	28
6020ICS-0A-125ML	83	AAGD1-500ML	95	AASI1-125ML	97	CGAG1-500ML	
6020ICS-0A-500ML	83	AAGE1-125ML	95	AASI1-500ML	97	CGAL10-125ML	30
6020ICS-0B-125ML	83	AAGE1-500ML	95	AASM1-125ML	96	CGAL10-30ML	30
6020ICS-8A-125ML	80	AAHF1-125ML	95	AASM1-500ML	96	CGAL10-500ML	30
6020ICS-8A-500ML	80	AAHF1-500ML	95	AASN1-125ML	97	CGAL1-125ML	24
6020ICS-9A-125ML		AAHG1-125ML		AASN1-500ML	97	CGAL1-30ML	
6020ICS-9A-500ML		AAHG1-500ML		AASR1-125ML	97	CGAL1-500ML	24
6020ICS-9B-125ML		AAH01-125ML		AASR1-500ML		CGALCL1-125ML	
6020ISS-125ML		AAH01-500ML		AATA1-125ML		CGALCL1-30ML	
6020ISS-500ML		AAIN1-125ML		AATA1-500ML		CGALCL1-500ML	
6020SPK-S-125ML	80 82 83	AAIN1-500ML		AATB1-125ML		CGAS(3)1-125ML	
6020SPK-W-125ML		AAIR1-125ML		AATB1-500ML		CGAS(3)1-30ML	
6020TS-125ML		AAIR1-500ML		AATE1-125ML		CGAS(3)1-500ML	
002010 120WE	.00, 01, 02, 04	AAK1-125ML		AATE1-500ML		CGAS(5)1-125ML	
AAAG1-125ML	07	AAK1-500ML		AATH1-125ML		CGAS(5)1-30ML	
AAAG1-500ML		AALA1-125ML		AATH1-500ML		CGAS(5)1-500ML	
AAAGCN-125ML		AALA1-500ML		AATI1-300ML		CGAS10-125ML	,
AAAGCN-125WL		AALI1-125ML		AATI1-125WL		CGAS10-125WL	,
AAAL1-125ML		AALI1-500ML		AATL1-125ML		CGAS10-500ML	
				AATL1-125ML			
AAAL1-500ML		AALU1-125ML		AATM1-300ML		CGAS1-125ML	
AAAS1-125ML		AALU1-500ML				CGAS1-30ML	
AAAS1-500ML		AAMG1-125ML		AAU1 105ML		CGAS1-500ML	
AAAU1-125ML		AAMG1-500ML		AAU1-125ML		CGAU10-125ML	
AAAU1-500ML		AAMN1-125ML		AAU1-500ML		CGAU10-30ML	
AAAUCN-125ML		AAMN1-500ML		AAV1-125ML		CGAU10-500ML	
AAAUCN-500ML		AAM01-125ML		AAV1-500ML		CGAU1-125ML	
AAB1-125ML		AAM01-500ML		AAW1-125ML		CGAU1-30ML	
AAB1-500ML		AANA1-125ML		AAW1-500ML		CGAU1-500ML	
AABA1-125ML		AANA1-500ML		AAY1-125ML		CGAUN1-125ML	•
AABA1-500ML		AANB1-125ML		AAY1-500ML		CGAUN1-30ML	
AABE1-125ML	95	AANB1-500ML	96	AAYB1-125ML		CGAUN1-500ML	25, 77
AABE1-500ML	95	AAND1-125ML		AAYB1-500ML		CGB10-125ML	
AABI1-125ML	95	AAND1-500ML	96	AAZN1-125ML	97	CGB10-500ML	30
AABI1-500ML	95	AANI1-125ML	96	AAZN1-500ML	97	CGB1-125ML	24
AACA1-125ML	95	AANI1-500ML	96	AAZNCN-125ML	35	CGB1-30ML	24
AACA1-500ML	95	AAP1-125ML	96	AAZNCN-500ML	35	CGB1-500ML	24
AACD1-125ML	95	AAP1-500ML	96	AAZR1-125ML	97	CGBA10-125ML	30

30	CGDY10-30ML	30				
24	CGDY10-500ML	30	CGICI1-500ML	26	CGNA1-125ML	
24	CGDY1-125ML	25	CGIN10-125ML	31	CGNA1-30ML	28
24	CGDY1-30ML	25	CGIN10-500ML	31	CGNA1-500ML	28
30	CGDY1-500ML	25	CGIN1-125ML	26	CGNB10-125ML	32
30	CGER10-125ML	30			CGNB1-125ML	
24	CGER10-30ML	30			CGNB1-30ML	26
24					CGNB1-500ML	
24					CGNB20510-125ML	
30						
30, 56						
-					CGOS1-30ML	
24, 56			CGLI10-30ML	31		
24, 56	CGGA1-500ML	25	CGLI10-500ML	31	CGP10-125ML	32
24, 56	CGGD10-125ML	31	CGLI1-125ML	26	CGP10-30ML	
30	CGGD10-30ML	31	CGLI1-30ML	26	CGP10-500ML	32
30	CGGD10-500ML	31			CGP1-125ML	
30					CGP1-30ML	27
24						
24						
24						
						,
						,
						,
						-
		. ,				
		. ,				
		•				
		•				
25						
			CGM010-30ML	31		
30			CGM010-500ML	31		
25	CGH01-125ML	25	CGM01-125ML	26		
25	CGH01-30ML	25	CGM01-30ML	26	CGPR1-500ML	
30	CGH01-500ML	25	CGM01-500ML	26	CGPT10-125ML	32
30	CGICBR1-125ML	24	CGMSA10-125ML	33	CGPT10-30ML	
30						
25						
30	CGICCLI-300ML	26	CGNA10-125ML	33 22	CGPTN1-125MI	27
	24 24 24 30 30 30 30 24 24 24 24 24 30 30 30 30 30 24 24 24 30 30 30 30 24 24 24 24 24 30,56 24,56 24,56 24,56 24,56 24,56 24,56 24,56 24,56 24,56 30 30 30 30 30 30 30 30 30 30 30 30 30	24 CGDY10-500ML 24 CGDY1-125ML 24 CGDY1-30ML 30 CGER10-125ML 24 CGER10-30ML 24 CGER10-500ML 24 CGER1-125ML 30 CGER1-125ML 30 CGER1-30ML 30 CGER1-30ML 30 CGER1-30ML 30 CGER1-30ML 30 CGEU10-125ML 30 CGEU10-125ML 30 CGEU10-30ML 30 CGEU1-30ML 30 CGFE10-500ML 30 CGFE10-500ML 30 CGFE10-50ML 30 CGFE10-50ML 30 CGFE10-30ML 30 CGFE10-50ML 30 CGFE10-50ML 30 CGFE1-30ML 30 CGFE1-30ML 30 CGFE1-30ML 30 CGFE1-30ML 30 CGFE1-500ML 30 CGGE1-30ML	24 CGDY1-50ML .25 24 CGDY1-125ML .25 24 CGDY1-500ML .25 .30 CGER10-125ML .30 .24 CGER10-30ML .30 .24 CGER10-500ML .30 .24 CGER1-125ML .25 .30 CGER1-300ML .25 .30 CGER1-500ML .30 .24 CGEU10-125ML .30 .24 CGEU10-30ML .30 .24 CGEU10-30ML .30 .24 CGEU1-30ML .25 .30 CGEU1-30ML .25 .30 CGEU1-30ML .25 .30 CGEU1-30ML .25 .24 CGEU1-500ML .25 .24 CGEU1-500ML .25 .24 CGEU1-500ML .31 .30 CGFE1-125ML .31 .30 CGFE1-125ML .31 .30 CGFE1-125ML .31 .30 CGFE1-125ML .26 .24 CGFA10-500ML .26 .24	24	24	24 CGDY1-30ML 25 CGNH-125ML 25 CGNH-125ML 26 CGNH-125ML 27 CGNH-130ML 28 CGNH-125ML 28 CGNH-125ML 26 CGNH-130ML 26 CGNH-130ML 26 CGNH-130ML 26 CGNH-125ML 26 CGNH-125ML 26 CGNH-125ML 26 CGNH-125ML 27 CGNH-130ML 26 CGNH-125ML 27 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 29 CGNH-125ML 21 CGNH-125ML 21 CGNH-125ML 21 CGNH-125ML 21 CGNH-125ML 22 CGNH-125ML 23 CGNH-125ML 26 CGNH-125ML 27 CGNH-125ML 27 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 28 CGNH-125ML 29 CGNH-125ML 27 CGNH-130ML 29 CGNH-125ML 27 CGNH-130ML 29 CGNH-125ML 27 CGNH-130ML 27 CGNH-

OCDINI 20M	07	000101 10FM	0.0	00TM1 20MI	20	0140 0 500141	4.5
CGPTN1-30ML		CGSI01-125ML		CGTM1-30ML		CMS-2-500ML CMS-3-125ML	
CGPTN1-500ML CGPTN031-125ML.		CGSI01-30ML CGSI01-500ML		CGTM1-500ML CGU10-125ML		CMS-4-125ML	
CGPTN031-30ML		CGSIONA1-125ML		CGU10-30ML		CMS-4-500ML CMS-5-125ML	
CGPTN031-500ML		CGSIONA1-500ML		CGU10-500ML		CMS-5-125ML	• • • • • • • • • • • • • • • • • • • •
CGRB10-125ML		CGSM10-125ML		CGU1-125ML			
CGRB10-500ML		CGSM10-30ML		CGU1-30ML		CN-1000-25-20ML	
CGRB1-125ML		CGSM10-500ML		CGU1-500ML		CON100000-25-125ML	
CGRB1-30ML		CGSM1-125ML		CGV10-125ML		CON100000-25-1L	
CGRE10-125ML		CGSM1-30ML		CGV10-30ML		CON100000-25-500ML.	
CGRE10-500ML		CGSM1-500ML		CGV10-500ML		CON10000-25-125ML	
CGRE1-125ML		CGSN10-125ML		CGV1-125ML		CON10000-25-1L	
CGRE1-30ML		CGSN10-30ML		CGV1-30ML		CON10000-25-500ML	
CGRE1-500ML		CGSN10-500ML		CGV1-500ML		CON1000-25-125ML	
CGRH10-125ML		CGSN1-125ML		CGW10-125ML		CON1000-25-1L	
CGRH10-30ML		CGSN1-30ML		CGW10-500ML		CON1000-25-500ML	
CGRH10-500ML		CGSN1-500ML		CGW1-125ML		CON100-25-125ML	
CGRH1-125ML		CGSNCL1-125ML		CGW1-30ML		CON100-25-1L	
CGRH1-30ML		CGSNCL1-30ML		CGW1-500ML		CON100-25-500ML	102
CGRH1-500ML		CGSR10-125ML		CGWH201-125ML		CON10-25-125ML	
CGRHN1-125ML		CGSR10-500ML	33	CGY10-125ML		CON10-25-500ML	
CGRHN1-30ML	27	CGSR1-125ML	28	CGY10-30ML	33	CON1200-25-125ML	102
CGRHN1-500ML		CGSR1-30ML		CGY10-500ML	33	CON1200-25-1L	102
CGRU10-125ML		CGSR1-500ML		CGY1-125ML		CON1200-25-500ML	102
CGRU10-30ML	32	CGTA10-125ML	33	CGY1-30ML	29	CON1400-25-125ML	93, 102
CGRU10-500ML	32	CGTA1-125ML	28	CGY1-500ML	29	CON1400-25-1L	93, 102
CGRU1-125ML	27	CGTA1-30ML	28	CGYB10-125ML	33	CON1400-25-500ML	93, 102
CGRU1-30ML	27	CGTA1-500ML	28	CGYB10-30ML	33	CON1413-25-125ML	102
CGRU1-500ML	27	CGTB10-125ML	33	CGYB10-500ML	33	CON1413-25-1L	102
CGS10-125ML	33	CGTB10-30ML	33	CGYB1-125ML	29	CON1413-25-500ML	102
CGS10-30ML	33	CGTB10-500ML	33	CGYB1-30ML	29	CON1430-25-125ML	102
CGS10-500ML	33	CGTB1-125ML	28	CGYB1-500ML	29	CON1430-25-1L	102
CGS1-125ML	28	CGTB1-30ML	28	CGZN10-125ML	34	CON1430-25-500ML	102
CGS1-30ML	28	CGTB1-500ML	28	CGZN10-30ML	34	CON147-25-125ML	102
CGS1-500ML		CGTE10-125ML		CGZN10-500ML		CON147-25-1L	102
CGSB10-125ML		CGTE10-500ML		CGZN1-125ML		CON147-25-500ML	102
CGSB10-500ML		CGTE1-125ML		CGZN1-30ML		CON2-25-125ML	
CGSB1-125ML		CGTE1-30ML		CGZN1-500ML		CON2-25-500ML	
CGSBF1-125ML		CGTE1-500ML		CGZR10-125ML		CON500-25-125ML	
CGSC10-125ML		CGTEN1-125ML		CGZR10-30ML		CON500-25-1L	
CGSC10-30ML		CGTEN1-30ML		CGZR10-500ML		CON500-25-500ML	102
CGSC10-500ML		CGTEN1-500ML		CGZR1-125ML		CON5-25-125ML	
CGSC1-125ML		CGTH10-125ML		CGZR1-30ML		CON5-25-500ML	
CGSC1-30ML		CGTH1-125ML		CGZR1-500ML		CON84-25-125ML	
CGSC1-500ML		CGTH1-30ML		CGZRCL10-125ML		CON84-25-1L	
CGSE(4)1-125ML		CGTH1-500ML		CGZRCL10-500ML		CON84-25-500ML	
CGSE(4)1-30ML		CGTI10-125ML		CIROS-OES-TS-125ML		CSN-ISB-500ML	
CGSE(4)1-500ML		CGTI10-30ML		CLP-AES-CRQL-2-125ML.		CSN-ISB5-500ML	
CGSE(6)1-125ML		CGTI10-500ML		CLP-MS-RINSE-125ML		0011 1000 0001112	
CGSE(6)1-30ML		CGTI1-125ML		CLP-MS-RINSE-500ML	•	DA-CL-COLOR-500ML	108
CGSE10-125ML		CGTI1-30ML		CLP-MS-SPK-125ML	•	DA-PO4-ASCORBIC-500	
CGSE10-30ML		CGTI1-500ML		CLPP-CAL-1-125ML		DA-P04-COLOR-500ML	
CGSE10-500ML		CGTL10-125ML		CLPP-CAL-3-125ML		DA-SO4-TURB-500ML	
CGSI10-125ML		CGTL10-500ML		CLPP-ICS-A-125ML		DA 304 TORD 300ML	100
CGSI10-125ML		CGTL10-500ML		CLPP-ICS-A-125ML		ELUENT1817-100ML	00 01
CGSI10-30ML		CGTL1-125ML		CLPP-ICS-A-500ML		ELUENT1817-100ML	
CGSI10-300ML		CGTL1-500ML		CLPP-ICS-B-125ML		ELUENT3510-100ML	
CGSI1-30ML		CGTM10-125ML		CLPP-SPK-1-125ML		ELUENT4514-500ML	
CGSI1-500ML		CGTM10-125ML		CLPP-SPK-1-125ML		LLULN 14J14-JUUNL	90
CGSINA1-125ML		CGTM10-30ML		CMS-1-125ML		GENESIS-ICAL-125ML	40
CGSINAT-125ML		CGTM1-125ML		CMS-1-125ML		GENESIS-ICAL-125ML	
OGSHNAT-DUUNIL	20	OOTIVIT-120IVIL	Δ9	CIVIO-Z-IZJIVIL	40	GLINESIS-IGAL-SUUIVIE	49

ICADP1-125ML	86	ICNN021-125ML	86	IV-STOCK-4-500ML	38	IV-STOCK-70-125ML	54
ICBA1-125ML	88	ICNN021-500ML	86	IV-STOCK-5-125ML	38	IV-STOCK-72-125ML	77
ICBEN1-125ML		ICNN031-125ML	86	IV-STOCK-6-125ML	38	IV-STOCK-73-125ML	77
ICBR1-125ML	86, 93, 100	ICNN031-500ML	86	IV-STOCK-7-125ML	39, 89	IV-STOCK-74-500ML	44
ICBR1-500ML		ICN021-125ML	86	IV-STOCK-7-500ML	39, 89	IV-STOCK-75-125ML	44
ICBR031-125ML		ICNO21-500ML	86	IV-STOCK-8-125ML	39	IV-STOCK-77-500ML	44
ICBR031-500ML		ICN02-100PPM-125ML		IV-STOCK-8-500ML	39	IV-STOCK-78-125ML	
ICBTR1-125ML		ICN031-125ML		IV-STOCK-9-125ML	39	IV-STOCK-79-125ML	
ICCA1-125ML		ICNO31-500ML		IV-STOCK-10-125ML		IV-STOCK-1643-125ML	
ICCA1-500ML		ICNTA1-125ML		IV-STOCK-12-125ML		IV-STOCK-1643-500ML	
ICCIT1-125ML		ICOAC1-125ML		IV-STOCK-13-125ML		17 0100K 1040 000WE	
ICCIT1-500ML		ICOAC1-125ML		IV-STOCK-14-500ML		LACB1-500ML	10
ICCL10-125ML		ICOPR1-125ML		IV-STOCK-14-300ML		LINB2-125ML	
ICCL10-500ML		ICOXA1-125ML		IV-STOCK-15-125ML		LINDZ-123WL	32, 90
						MM-MG-10-125ML	00
ICCL1-125ML		ICOXA1-500ML		IV-STOCK-17-125ML			
ICCL1-500ML		ICP041-125ML		IV-STOCK-18-125ML		MM-P-40-125ML	
ICCL021-125ML	86, 93, 100	ICPO41-500ML		IV-STOCK-21-125ML		MM-PD-10-125ML	
ICCL021-500ML		ICPP041-125ML		IV-STOCK-21-500ML		MM-PD-10-500ML	
ICCL031-125ML	86, 93, 100	ICPP041-500ML		IV-STOCK-22-125ML		MM-PD-5-125ML	
ICCL031-500ML	86, 93, 100	ICRB1-125ML	88	IV-STOCK-23-500ML		MM-PD-5-500ML	• • • • • • • • • • • • • • • • • • • •
ICCL041-125ML	87, 93	ICS2031-125ML	87	IV-STOCK-24-125ML	41	MM-PDMG-32-125ML	
ICCL041-500ML	87, 93	ICS2031-500ML	87	IV-STOCK-24-500ML	41	MM-PDMG-32-500ML	
ICC031-125ML	86	ICSCC1-125ML	87	IV-STOCK-26-125ML	41	MS10B-10PPM-100ML	20
ICC031-500ML	86	ICSCN1-125ML		IV-STOCK-27-125ML	41	MS11B-10PPM-100ML	
ICCR041-125ML		IC-SCS1-125ML		IV-STOCK-28-125ML		MS6LI-100PPM-125ML	
ICCS1-125ML		ICSO410-125ML		IV-STOCK-29-125ML		MS6LI-10PPM-125ML	
ICDCA-S-125ML		ICSO410-500ML		IV-STOCK-30-125ML		MSAELUENT-100ML	
ICDCA-S-500ML		ICSO41-125ML		IV-STOCK-31-125ML		MSAELUENT-500ML	
ICDEA1-125ML		ICSO41-500ML		IV-STOCK-33-125ML		MSAG-100PPM-125ML	
ICDMA1-125ML		ICSR1-125ML		IV-STOCK-33-125ML		MSAG-100PPM-500ML	
ICF1-125ML		ICTA1-125ML		IV-STOCK-33-500ML		MSAG-10PPM-125ML	
						MSAL-100PPM-125ML	
ICF1-500ML		ICTEA1-125ML		IV-STOCK-34-500ML			
IC-FAS-1A-125ML		ICTMA1-125ML		IV-STOCK-35-125ML		MSAL-100PPM-500ML	
IC-FAS-1A-500ML		ICTMAH1-125ML		IV-STOCK-36-125ML		MSAL-10PPM-125ML	
ICGLY1-125ML		ICTRTR1-125ML		IV-STOCK-36-500ML		MSAS-100PPM-125ML	,
ICGTR1-125ML		IV-7-125ML	•	IV-STOCK-38-125ML		MSAS-10PPM-125ML	,
ICHC01-125ML		IV-19-125ML		IV-STOCK-40-125ML		MSAU-100PPM-125ML	
ICHC01-500ML		IV-21-125ML		IV-STOCK-41-125ML		MSAU-100PPM-500ML	
ICI1-125ML		IV-26-125ML	69, 75	IV-STOCK-50-125ML	43	MSAU-10PPM-125ML	20
ICI1-500ML	86	IV-26-500ML		IV-STOCK-51-125ML	43	MSAU-10PPM-500ML	
ICK1-125ML	88	IV-28-125ML	69, 75	IV-STOCK-52-125ML	43	MSB-100PPM-125ML	22
ICK1-500ML	88	IV-28-500ML	69, 75	IV-STOCK-53-125ML	43	MSB-10PPM-125ML	20
ICKHP1-125ML	87	IV-6239	57	IV-STOCK-54-125ML	43	MSBA-100PPM-125ML	22
ICLCT1-125ML		IV-48592		IV-STOCK-55-125ML		MSBA-10PPM-125ML	
ICLI1-125ML		IV-ACID-BLANK-1L		IV-STOCK-56-125ML	44	MSBE-100PPM-125ML	22
ICMEA1-125ML		IV-ACID-BLANK-500ML		IV-STOCK-57-125ML		MSBE-10PPM-125ML	
ICMEA1-500ML		IV-DI-BLANK-1L		IV-STOCK-58-125ML		MSBI-100PPM-125ML	
ICMG1-125ML		IV-DI-BLANK-500ML		IV-STOCK-59-125ML		MSBI-10PPM-125ML	
ICMG1-500ML		IV-ICPMS-71A-125ML		IV-STOCK-59-500ML		MSCA-100PPM-125ML	
ICMLA1-125ML		IV-ICPMS-71A-500ML		IV-STOCK-59-300ML		MSCA-100PPM-500ML	
						MSCA-10PPM-125ML	
ICMLE1-125ML		IV-ICPMS-71B-125ML		IV-STOCK-61-125ML			
ICML01-125ML		IV-ICPMS-71B-500ML		IV-STOCK-61-500ML		MSCA-10PPM-500ML	
ICMMA1-125ML		IV-ICPMS-71C-125ML		IV-STOCK-62-125ML		MSCD-100PPM-125ML	
ICMPA1-125ML		IV-ICPMS-71C-500ML		IV-STOCK-63-125ML		MSCD-10PPM-125ML	
ICMSA1-125ML		IV-ICPMS-71D-125ML		IV-STOCK-64-125ML		MSCE-100PPM-125ML	
ICNA1-125ML		IV-ICPMS-71D-500ML		IV-STOCK-64-500ML		MSCE-10PPM-125ML	
ICNA1-500ML		IV-STOCK-2-125ML		IV-STOCK-65-125ML		MSCO-100PPM-125ML	
ICNH41-125ML		IV-STOCK-2-500ML		IV-STOCK-66-125ML	53	MSCO-10PPM-125ML	
ICNH41-500ML	88	IV-STOCK-3-125ML	38	IV-STOCK-67-125ML	54	MSCR(3)-100PPM-125ML	22
ICNNH41-125ML	88	IV-STOCK-3-500ML		IV-STOCK-68-125ML		MSCR(3)-10PPM-125ML	20
ICNNH41-500ML	88	IV-STOCK-4-125ML	38	IV-STOCK-69-125ML	54	MSCR(6)-100PPM-125ML	22

MSCR(6)-10PPM-125ML	20	MSS-100PPM-125ML	22	PH-3-4L	103	PH-11-1L	104
MSCS-100PPM-125ML		MSS-10PPM-125ML	21	PH-3-10L	103	PH-11-4L	
MSCS-10PPM-125ML		MSSB-100PPM-125ML		PH-4-250ML		PH-11-10L	
MSCU-100PPM-125ML		MSSB-10PPM-125ML		PH-4-500ML		PH-12-250ML	
MSCU-10PPM-125ML		MSSC-100PPM-125ML		PH-4-1L		PH-12-500ML	
MSFE-100PPM-125ML		MSSC-100PPM-500ML		PH-4-4L		PH-12-1L	
MSFE-100PPM-500ML		MSSC-10PPM-125ML		PH-4-10L		PH-12-4L	
MSFE-10PPM-125ML		MSSE-100PPM-125ML		PHRED-4-250ML		PH-12-10L	
MSGE-100PPM-125ML		MSSE-10PPM-125ML		PHRED-4-500ML		PH-12.47-250ML	
MSGE-10PPM-125ML		MSSI-100PPM-125ML		PHRED-4-1L		PH-12.47-500ML	
MSHF-100PPM-125ML		MSSI-100PPM-500ML		PHRED-4-4L		PH-12.47-1L	104
MSHF-100PPM-500ML		MSSI-10PPM-125ML		PHRED-4-10L			
MSHF-10PPM-125ML		MSSN-100PPM-125ML		PH-5-250ML		QCP-CICV-1-125ML	
MSHF-10PPM-500ML		MSSN-10PPM-125ML		PH-5-500ML		QCP-CICV-2-125ML	
MSHG-100PPM-125ML	22, 55	MSSN-10PPM-500ML	21	PH-5-1L	103	QCP-CICV-3-125ML	59, 61, 63
MSHG-10PPM-125ML	21, 48, 55	MSSR-100PPM-125ML	22	PH-5-4L	103	QCP-QCS-1-125ML	68, 74
MSHG-10PPM-500ML	21, 48, 55	MSSR-10PPM-125ML	21	PH-6-250ML	103	QCP-QCS-2-125ML	68, 74
MSHG-1PPM-125ML		MSTB-100PPM-125ML		PH-6-500ML		QCP-QCS-3-125ML	
MSHG-1PPM-500ML		MSTB-10PPM-125ML		PH-6-1L	103	QCP-QCS-3-500ML	
MSHGN-100PPM-125ML		MSTEN-100PPM-125ML		PH-6-4L		QCP-QCS-4-125ML	
MSHGN-10PPM-125ML		MSTEN-10PPM-125ML	,	PH-6-10L		QCP-QCS-5-125ML	
MSHGN-10PPM-500ML		MSTH-100PPM-125ML		PH-6.86-250ML		QCF-QC3-3-123WL	92
MSHO-100PPM-125ML		MSTH-10PPM-125ML		PH-6.86-500ML		TCLP-1REV-125ML	70
MSH0-10PPM-125ML		MSTI-100PPM-125ML		PH-6.86-1L		TCLP-AA-HG-125ML	
MSIN-100PPM-125ML		MSTI-10PPM-125ML		PH-6.86-4L		THERMO-4AREV-1L	
MSIN-10PPM-125ML		MSTL-100PPM-125ML		PH-6.86-10L		THERMO-4AREV-500ML	
MSK-100PPM-125ML		MSTL-10PPM-125ML		PH-7-250ML		THERMO-5A-125ML	50
MSK-100PPM-500ML		MSU-100PPM-125ML		PH-7-500ML		THERMO-5A-250ML	
MSK-10PPM-125ML		MSU-100PPM-500ML		PH-7-1L		THM-TS-1-125ML	
MSLI-100PPM-125ML		MSU-10PPM-125ML	21	PH-7-4L	103	TOCKHP1-125ML	24, 100
MSLI-100PPM-500ML		MSU-10PPM-500ML	21	PH-7-10L		TOCKHP1-500ML	24, 100
MSLI-10PPM-125ML	20, 48	MSV-100PPM-125ML	22	PHYELLOW-7-250ML	103	TUNE F-X-SERIES-125ML	51
MSMG-100PPM-125ML		MSV-10PPM-125ML	21	PHYELLOW-7-500ML	103		
MSMG-100PPM-500ML	22	MSW-100PPM-125ML		PHYELLOW-7-1L		UA-1-500ML	106
MSMG-10PPM-125ML		MSW-100PPM-500ML		PHYELLOW-7-4L	103	UNS-1-500ML	
MSMG-10PPM-500ML		MSW-10PPM-500ML		PHYELLOW-7-10L			
MSMN-100PPM-125ML		MSY-100PPM-125ML		PH-8-250ML		VAR-CAL-1-125ML	51
MSMN-10PPM-125ML		MSY-100PPM-500ML		PH-8-500ML		VAR-CAL-1-500ML	51
MSMN-10PPM-500ML		MSY-10PPM-125ML		PH-8-1L		VAR-CAL-2-125ML	
MSMO-100PPM-125ML		MSZN-100PPM-125ML		PH-8-4L		VAR-CAL-Z-125MLVAR-CAL-7-125ML	
MSMO-100PPM-125ML		MSZN-100PPM-125ML		PH-8-10L		VAR-CAL-7-125ML	
						VAR-GAL-7-500ML	51
MSNA-100PPM-125ML		MSZN-10PPM-125ML		PH-9-250ML		VAR-IS-1-125ML	52
MSNA-100PPM-500ML		MSZN-10PPM-500ML	21	PH-9-500ML		VAR-TS-MS-125ML	52
MSNA-10PPM-125ML				PH-9-1L			
MSNA-10PPM-500ML		PCRM-IR-1000		PH-9-4L		WW-CAL-1A-125ML	
MSNI-100PPM-125ML		PCRM-0S-1000		PH-9-10L		WW-CAL-2-125ML	66, 70
MSNI-10PPM-125ML	21	PE-CHK-1-125ML	49	PH-9.18-250ML	104	WW-CAL-3-125ML	66, 70
MSOS-100PPM-125ML	22	PE-TS-1-125ML	50	PH-9.18-500ML	104	WW-CAL-4A-125ML	67, 70
MSOS-10PPM-125ML	21	PE-TS-1-500ML	50	PH-9.18-1L	104	WW-CAL-4B-125ML	67, 70
MSP-100PPM-125ML	22	PH-1.68-250ML	103	PH-10-250ML	104	WW-CAL-5-125ML	
MSP-100PPM-500ML		PH-1.68-500ML	103	PH-10-500ML	104	WW-IPC-1-125ML	
MSP-10PPM-125ML		PH-1.68-1L	103	PH-10-1L		WW-IPC-2-125ML	
MSPB-100PPM-125ML		PH-1.68-4L		PH-10-4L		WW-IPC-3-125ML	
MSPB-100PPM-500ML	,	PH-2-250ML		PH-10-10L		WW-LFS-1-125ML	
MSPB-10PPM-125ML		PH-2-500ML		PHBLUE-10-250ML		WW-LFS-1-125ML	
		PH-2-1L		PHBLUE-10-500ML			
MSPT-100PPM-125ML						WW-MSCAL-1-125ML	
MSPT-10PPM-125ML		PH-2-4L		PHBLUE-10-1L		WW-MSCAL-2-125ML	/6
MSRH-100PPM-125ML		PH-2-10L		PHBLUE-10-4L			
MSRH-10PPM-125ML		PH-3-250ML		PHBLUE-10-10L			
MSRHN-100PPM-125MI	22	PH-3-500MI	103	PH-11-250MI	104		

TERMS & CONDITIONS

Pricing

Visit our website for all current pricing information:

inorganicventures.com

Shipping

Orders shipped within the U.S. are sent FOB shipping point via FedEx or UPS. Other carriers are also available. If you prefer a specific carrier, let us know.

Terms

Our terms are net 30 days. To establish your account, contact us during regular business hours. 8:00 a.m. to 5:00 p.m. EST.

Credit Orders

We gladly accept MasterCard, Visa or American Express.

Cautionary Notice

OUR PRODUCTS ARE NOT FOR DRUG, FOOD OR HOUSEHOLD APPLICATIONS. They are intended for laboratory use only by qualified individuals trained in the proper handling of such materials. The consumer assumes all responsibility for the safe storage, handling, disposal and application of any Inorganic Ventures product.

Copyright

All content and graphics appearing herein are
© 1985–2023 by Inorganic
Ventures, Inc. and may not be reproduced for any purpose without Inorganic Ventures' express permission.

Customer Service

Representatives are available Monday through Friday, between 8:00 a.m. and 5:00 p.m. EST.

Phone: 800.669.6799 (US & Canada)

+1.540.585.3030 (International)

Fax: 540.585.3012

Email: info@inorganicventures.com
Online: inorganicventures.com

Export Orders

We have representation in countries across the globe. Contact your distributor for regional pricing, orders and additional catalogs. Visit our website to find the distributor in your area.

Our Guarantee

As stated in our Declaration of Integrity (see pg. 7), if you're dissatisfied with your order for any reason, we'll resolve the situation in whatever way works best for you:

- A full refund;
- Complimentary technical services; or
- A replacement item rushed to you at no cost.*

Returns, Exchanges and Damaged Goods

Situations not covered under the terms of our guarantee (above) may require a return and/or exchange of the product. Refunds, replacements and exchanges are considered at management's discretion. Items will only be accepted for return with a valid return authorization number. Contact us to receive this number.

All transportation and packaging expenses on returned or exchanged items are assumed by the customer. Credit for returned items is subject to a modest 15% restocking charge. Credit will not be issued until it is determined by our inspection that returned items are unused and undamaged. All returned items must be received within 60 days of the original invoice date.

If carton is received in a conspicuously damaged condition, alert carrier and refuse acceptance.

^{*} Refunds, replacements and exchanges are considered at management's discretion.

INORGANIC CUSTOM & STOCK CERTIFIED REFERENCE MATERIALS

