

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

1.0 ACCREDITATION / REGISTRATION

INORGANIC VENTURES is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (SAI Global File Number 010105).

2.0 PRODUCT DESCRIPTION

Product Code:	Single Analyte Mass Spec Solution
Catalog Number:	MSU-100PPM
Lot Number:	H2-U01115
Matrix:	1.4% (v/v) HNO3
Value / Analyte(s):	100 μg/mL ea:
	U
Starting Material:	UO2(NO3)2.6H2O
Starting Material Lot#:	1841
Starting Material Purity:	99.9818%

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Value:	100.00 ± 0.59 μg/mL
Certified Density:	1.006 g/mL (measured at 20 ± 1 °C)

Assay Information:

A	NALYTE	METHOD	NIST SRM#	SRM LOT#
U		Calculated		See Sec. 4.2
U		ICP Assay	3164	080521

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Characterization of CRM/RM by Two Methods	Characterization of CRM/RM by One Method				
Certified Value, X _{CRM/RM} , where two methods of characterization are used is the weighted mean of the two results:	Certified Value, X _{CRM/RM} , where one method of characterization is used is the mean of individual results:				
$X_{CRM/RM} = [(w_a) (X_a) + (w_b) (X_b)]$	XCRM/RM = mean of Assay Method A with standard uncertainty uchar a				
X_a = mean of Assay Method A with standard uncertainty u _{char a}					
X_{b} = mean of Assay Method B with standard uncertainty $u_{char b}$					
w_a and w_b = the weighting factors for each method calculated using the inverse					
square of the variance:					
$\mathbf{w_a} = (1/u_{char a})^2 / ((1/u_{char a})^2 + (1/u_{char b})^2))$					
$w_{b} = (1/u_{char b})^{2} / ((1/u_{char a})^{2} + (1/u_{char b})^{2}))$					
CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char a&b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{\frac{1}{2}}$	CRM/RM Expanded Uncertainty (±) = $U_{CRM/RM} = k (u_{char a}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{1/2}$				
k = coverage factor = 2 in all cases at Inorganic Ventures	k = coverage factor = 2 in all cases at Inorganic Ventures				
$u_{char a\&b} = [(w_a)^2 (u_{char a})^2 + (w_b)^2 (u_{char b})^2]^{\frac{1}{2}}$ where $u_{char a}$ and $u_{char b}$ are the square root of the sum of the squares of errors from characterization which include instrument	u _{char a} = square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty,				
measurement, density, NIST SRM uncertainty, weighing, and volume	weighing, and volume				
ubb = bottle to bottle homogeneity standard uncertainty	ubb = bottle to bottle homogeneity standard uncertainty				
ults = long term stability standard uncertainty (storage)	ults = long term stability standard uncertainty (storage)				
u _{sts} = short term stability standard uncertainty (transportation)	u _{sts} = short term stability standard uncertainty (transportation)				
Certified Abundance:					

IV's Certified Abundance

Isotope	Atom %				
Uranium 238U	99.6 ± 0.1				
Uranium 235U	0.37 ± 0.05				

4.0 TRACEABILITY TO NIST

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

	•																		
М	Ag	<	0.025329	М	Eu	<	0.000253	0	Na		0.000869	Μ	Se	<	0.012664	М	Zn	<	0.050658
М	Al	<	0.037993	Μ	Fe	<	1.266462	Μ	Nb	<	0.002532	i	Si	<		Μ	Zr	<	0.005065
М	As	<	0.151975	Μ	Ga	<	0.002532	Μ	Nd	<	0.012664	Μ	Sm	<	0.002532				
М	Au	<	0.000253	Μ	Gd	<	0.002532	Μ	Ni	<	0.050658	Μ	Sn	<	0.050658				
Μ	В	<	0.025329	Μ	Ge	<	0.005065	n	Os	<		Μ	Sr	<	0.012664				
М	Ва	<	0.025329	Μ	Hf	<	0.002532	i	Р	<		Μ	Та	<	0.002532				
М	Be	<	0.001266	i	Hg	<		Μ	Pb	<	0.075987	Μ	Tb	<	0.007598				
М	Bi	<	0.007598	Μ	Ho	<	0.000759	Μ	Pd	<	0.001266	Μ	Те	<	0.075987				
0	Са		0.003043	Μ	In	<	0.050658	Μ	Pr	<	0.002532	Μ	Th	<	0.007598				
М	Cd	<	0.007598	Μ	lr	<	0.000253	Μ	Pt	<	0.000253	Μ	Ti	<	0.012664				
М	Ce		0.035041	i	К	<		Μ	Rb	<	0.002532	Μ	ΤI	<	0.012664				
М	Co	<	0.007598	Μ	La	<	0.025329	Μ	Re	<	0.000759	Μ	Tm	<	0.000506				
М	Cr	<	0.050658	0	Li	<	0.014000	Μ	Rh	<	0.000253	s	U	<	0.005065				
М	Cs	<	0.017730	М	Lu	<	0.005065	Μ	Ru	<	0.000253	Μ	V	<	0.075987				
М	Cu	<	0.025329	Μ	Mg	<	0.075987	i	S	<		Μ	W	<	0.126646				
М	Dy	<	0.002532	Μ	Mn	<	0.015197	Μ	Sb	<	0.012664	Μ	Υ	<	0.012664				
М	Er	<	0.002532	Μ	Мо	<	0.037993	Μ	Sc	<	0.025329	Μ	Yb	<	0.005065				
					M - C	hec	ked by ICP-M	IS	C) - (Checked by IC	P-OF	s	į.	- Spectral Inter	ferer	nce		

n - Not Checked For s - Solution Standard Element

6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

7.1 Storage and Handling Recommendations

- Keep cap tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipette from the container. Do not return removed aliquots to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 238.03 +6 8 UO22+(uranyl) Chemical Compatibility - Soluble in HCI and HNO3. Avoid H3PO4. H2SO4 and HF matrices should not be a problem depending upon [U]. Although the UO22+ ion is distinctly basic, any U+4 will precipitate in basic media. UO22+salts are generally soluble in water and UO22+ is stable with most metals and inorganic anions. The uranyl phosphate is insoluble in water. UF4 and UF6 are water soluble.

Stability - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3 / LDPE container.

U Containing Samples (Preparation and Solution) -Metal (Dissolves rapidly in HCl and HNO3); Oxide (Soluble in HNO3); Ores (Digest for 1-2 hours with 1 gram of ore to 30 mL 1:1 HNO3. Silica insolubles are removed by filtration after bringing the sample to fumes with conc. H2SO4.)

Atomic Spectroscopic Information	(ICP-OES D.L.s are	given as <u>radial/axial</u> view):
----------------------------------	--------------------	-------------------------------------

Technique/Line	Estimated D.L.	Order	Interferences (underlined indicates severe)				
ICP-MS 238 amu	2 ppt	N/A	206Pb16O2				
ICP-OES 263.553 nm	0.3 / 0.01 µg/mL	1	Ce, Ir, Th, Rh, W, Zr,				
			Ta, Ti, V, Hf, Fe, Re,				
			Ru				
ICP-OES 367.007 nm	0.3 / 0.02 µg/mL	1	Th, Ce				
ICP-OES 385.958 nm	0.3 / 0.01 µg/mL	1	Th, Fe				

Uranium Note: If uranium is present in this standard, it is natural abundance unless specified in Section 3.0

8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

10.0 **QUALITY STANDARD DOCUMENTATION**

10.1 10CFR50 Appendix B - Nuclear Regulatory Commission

- Domestic Licensing of Production and Utilization Facilities

10.2 10CFR21 - Nuclear Regulatory Commission

- Reporting defects and Non-Compliance

10.3 ISO 9001 Quality Management System Registration

- SAI Global File Number 010105

10.4 ISO/IEC Guide 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

10.5 ISO/IEC Guide 34 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

11.0 CERTIFICATION, EXPIRATION AND PERIOD OF VALIDITY

11.1 Certification Issue Date

January 14, 2015

11.2 Expiration Date

11.3 Period of Validity

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is handled and stored in accordance with instructions given in Sec 7.0 and used prior to the date given in Sec 11.2. This certification is nullified if the CRM/RM is damaged, contaminated, or otherwise modified.

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Zach Saunders Product Documentation Technician

zachow Sounders Buon allegenets Paul R. Laineo

Certificate Approved By:

Brian Alexander PhD., Technical Process Director

Certifying Officer:

Paul Gaines PhD., Senior Technical Director

Page 4 of 4