

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

# 1.0 ACCREDITATION / REGISTRATION

**INORGANIC VENTURES** is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories". Inorganic Ventures is also an ISO 9001 registered manufacturer (SAI Global File Number 010105).



# 2.0 PRODUCT DESCRIPTION

| Product Code:                      | Single Analyte Custom Grade Solution |  |  |  |  |  |  |
|------------------------------------|--------------------------------------|--|--|--|--|--|--|
| Catalog Number:                    | CGNI10                               |  |  |  |  |  |  |
| Lot Number:                        | J2-NI02088R                          |  |  |  |  |  |  |
| Matrix:                            | 3% (v/v) HNO3                        |  |  |  |  |  |  |
| Value / Analyte(s):                | 10 000 μg/mL ea:                     |  |  |  |  |  |  |
|                                    | Ni                                   |  |  |  |  |  |  |
| Starting Material:                 | Ni pieces                            |  |  |  |  |  |  |
| Starting Material Lot#:            | 1559                                 |  |  |  |  |  |  |
| Starting Material Purity:          | 99.9993%                             |  |  |  |  |  |  |
| CERTIFIED VALUES AND UNCERTAINTIES |                                      |  |  |  |  |  |  |

# 3.0 CERTIFIED VALUES AND UNCERTAINTIES

| Certified Value:   | 10 032 ± 32 μg/mL                |
|--------------------|----------------------------------|
| Certified Density: | 1.038 g/mL (measured at 20 $\pm$ |

## **Assay Information:**

| Assay Method #1 | 10 030 ± 66 μg/mL                          |  |  |  |  |  |
|-----------------|--------------------------------------------|--|--|--|--|--|
|                 | ICP Assay NIST SRM 3136 Lot Number: 120619 |  |  |  |  |  |
|                 |                                            |  |  |  |  |  |
| Assay Method #2 | 10 033 ± 32 μg/mL                          |  |  |  |  |  |

EDTA NIST SRM 928 Lot Number: 928

- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a National Institute of Standards and Technology (NIST) SRM/RM. See Sec 4.2 for balance traceability.

1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

#### Characterization of CRM/RM by Two Methods

Certified Value,  $X_{CRM/RM}$ , where two methods of characterization are used is the weighted mean of the two results:

#### $\boldsymbol{X}_{\text{CRM/RM}} = [(\boldsymbol{w}_a) \; (\boldsymbol{X}_a) + (\boldsymbol{w}_b) \; (\boldsymbol{X}_b)]$

- $X_a$  = mean of Assay Method A with standard uncertainty u<sub>char a</sub>
- $X_b$  = mean of Assay Method B with standard uncertainty  $u_{char b}$

 $w_a$  and  $w_b$  = the weighting factors for each method calculated using the inverse square of the variance:

- $\mathbf{w_a} = (1/u_{char a})^2 / ((1/u_{char a})^2 + (1/u_{char b})^2))$
- $\mathbf{w_b} = (1/u_{char b})^2 / ((1/u_{char a})^2 + (1/u_{char b})^2))$

CRM/RM Expanded Uncertainty (±) =  $U_{CRM/RM} = k (u_{char a\&b}^2 + u_{bb}^2 + u_{Its}^2 + u_{sts}^2)^{1/2}$ 

 $\mathbf{k}$  = coverage factor = 2 in all cases at Inorganic Ventures

uchar a&b = [(w<sub>a</sub>)<sup>2</sup> (u<sub>char a</sub>)<sup>2</sup> + (w<sub>b</sub>)<sup>2</sup> (u<sub>char b</sub>)<sup>2</sup>]<sup>1/2</sup> where u<sub>char a</sub> and u<sub>char b</sub> are the square root of the squares of errors from characterization which include instrument measurement, density, NIST SRM uncertainty, weighing, and volume

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

usts = short term stability standard uncertainty (transportation)

## 4.0 TRACEABILITY TO NIST

CRM/RM Expanded Uncertainty (±) =  $U_{CRM/RM} = k (u^2_{char a} + u^2_{bb} + u^2_{lts} + u^2_{sts})^{\frac{1}{2}}$ k = coverage factor = 2 in all cases at Inorganic Ventures

u<sub>char a</sub> = square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume

ubb = bottle to bottle homogeneity standard uncertainty

ults = long term stability standard uncertainty (storage)

u<sub>sts</sub> = short term stability standard uncertainty (transportation)

- This product is traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM/RM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRM/RM are available, the term 'in-house std.' is specified.

## 4.1 Thermometer Calibration

- All thermometers are NIST traceable through thermometers that are calibrated by an accredited calibration laboratory.

#### 4.2 Balance Calibration

- All analytical balances are calibrated by an accredited calibration laboratory and procedure. The weights used for testing are annually compared to master weights and are traceable to NIST.

#### 4.3 Glassware Calibration

- An in-house procedure is used to calibrate all Class A glassware used in the manufacturing and quality control of CRM/RMs.

## 5.0 TRACE METALLIC IMPURITIES (TMI ) DETERMINED BY ICP-MS AND ICP-OES (µg/mL)

CRM/RMs are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

| М | Ag | < | 0.015884 | М | Eu | < | 0.023826 | 0 | Na |   | 0.007409 | 0 | Se | < | 0.006000 | Μ | Zn | < | 0.158844 |
|---|----|---|----------|---|----|---|----------|---|----|---|----------|---|----|---|----------|---|----|---|----------|
| 0 | Al | < | 0.003000 | 0 | Fe |   | 0.014052 | Μ | Nb | < | 0.003971 | 0 | Si |   | 0.017885 | Μ | Zr |   |          |
| 0 | As | < | 0.005400 | Μ | Ga | < | 0.007942 | Μ | Nd | < | 0.015884 | Μ | Sm | < | 0.007942 |   |    |   |          |
| Μ | Au | < | 0.023826 | Μ | Gd | < | 0.007942 | s | Ni | < | 0.000900 | Μ | Sn | < | 0.039711 |   |    |   |          |
| 0 | В  | < | 0.009900 | Μ | Ge | < | 0.047653 | n | Os | < |          | Μ | Sr | < | 0.003971 |   |    |   |          |
| Μ | Ва | < | 0.079422 | Μ | Hf | < | 0.015884 | 0 | Ρ  | < | 0.100000 | Μ | Та | < | 0.055595 |   |    |   |          |
| 0 | Be | < | 0.002000 | 0 | Hg | < | 0.011000 | Μ | Pb | < | 0.023826 | Μ | Tb | < | 0.002382 |   |    |   |          |
| Μ | Bi | < | 0.003176 | Μ | Ho | < | 0.003971 | Μ | Pd | < | 0.039711 | Μ | Те | < | 0.238267 |   |    |   |          |
| 0 | Са |   | 0.022995 | Μ | In | < | 0.079422 | Μ | Pr | < | 0.002382 | Μ | Th | < | 0.007942 |   |    |   |          |
| Μ | Cd | < | 0.023826 | Μ | lr | < | 0.039711 | Μ | Pt | < | 0.015884 | Μ | Ti | < | 0.397111 |   |    |   |          |
| Μ | Ce | < | 0.039711 | 0 | К  |   | 0.002810 | Μ | Rb | < | 0.007942 | Μ | ΤI | < | 0.007942 |   |    |   |          |
| 0 | Co |   | 0.004471 | Μ | La | < | 0.003971 | Μ | Re | < | 0.007942 | Μ | Tm | < | 0.003176 |   |    |   |          |
| Μ | Cr | < | 0.039711 | 0 | Li | < | 0.000020 | Μ | Rh | < | 0.007942 | Μ | U  | < | 0.015884 |   |    |   |          |
| Μ | Cs | < | 0.002382 | Μ | Lu | < | 0.003176 | Μ | Ru | < | 0.015884 | Μ | V  | < | 0.015884 |   |    |   |          |
| Μ | Cu | < | 0.047653 | 0 | Mg |   | 0.000255 | 0 | S  | < | 0.025000 | Μ | W  | < | 0.079422 |   |    |   |          |
| Μ | Dy | < | 0.047653 | Μ | Mn | < | 0.031768 | Μ | Sb | < | 0.003971 | Μ | Υ  | < | 0.317689 |   |    |   |          |
| Μ | Er | < | 0.039711 | Μ | Мо | < | 0.015884 | Μ | Sc | < | 0.079422 | Μ | Yb | < | 0.007942 |   |    |   |          |
|   |    |   |          |   |    |   |          |   |    |   |          |   |    |   |          |   |    |   |          |

M - Checked by ICP-MS O - Checked by ICP-OES i - Spectral Interference n - Not Checked For s - Solution Standard Element

Page 2 of 4

Characterization of CRM/RM by One Method Certified Value, X<sub>CRM/RM</sub>, where one method of characterization is used is the mean of individual results:

XCRM/RM = mean of Assay Method A with standard uncertainty uchar a

## 6.0 INTENDED USE

- For the calibration of analytical instruments and validation of analytical methods as appropriate.

## 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

## 7.1 Storage and Handling Recommendations

- Keep cap tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$  C. Do not pipette from the container. Do not return removed aliquots to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 58.69 +2 6 Ni(H2O)62+ Chemical Compatibility -Stable in HCl, HNO3, H2SO4 ,HF, H3PO4. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

**Stability** - 2-100 ppb levels stable for months in 1% HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container.

Ni Containing Samples (Preparation and Solution) -Metal (Soluble in HNO3); Oxides (Soluble in HCI); Ores (Dissolve in HCI / HNO3).

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

| Technique/Line     | Estimated D.L.      | Order | Interferences (underlined indicates severe) |  |  |  |  |  |  |
|--------------------|---------------------|-------|---------------------------------------------|--|--|--|--|--|--|
| ICP-MS 60 amu      | 100 ppt             | n/a   | 43Ca16O1H ,                                 |  |  |  |  |  |  |
|                    |                     |       | 44Ca16O,                                    |  |  |  |  |  |  |
|                    |                     |       | 23Na37Cl                                    |  |  |  |  |  |  |
| ICP-OES 221.647 nm | 0.01 / 0.0009 µg/mL | 1     | Si                                          |  |  |  |  |  |  |
| ICP-OES 231.604 nm | 0.02 / 0.002 µg/mL  | 1     | Sb, Ta, Co                                  |  |  |  |  |  |  |
| ICP-OES 232.003 nm | 0.02 / 0.006 µg/mL  | 1     | Cr, Re, Os, Nb, Ag,                         |  |  |  |  |  |  |
|                    |                     |       | Pt, Fe                                      |  |  |  |  |  |  |

## 8.0 HAZARDOUS INFORMATION

- Please refer to the Safety Data Sheet for information regarding this CRM/RM.

# 9.0 HOMOGENEITY

- This solution was mixed according to an in-house procedure and is guaranteed to be homogeneous. Homogeneity data indicate that the end user should take a minimum sample size of 0.2 mL to assure homogeneity.

## 10.0 QUALITY STANDARD DOCUMENTATION

## 10.1 10CFR50 Appendix B - Nuclear Regulatory Commission

- Domestic Licensing of Production and Utilization Facilities

## 10.2 10CFR21 - Nuclear Regulatory Commission

- Reporting defects and Non-Compliance

### 10.3 ISO 9001 Quality Management System Registration

- SAI Global File Number 010105

## 10.4 ISO/IEC Guide 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

- Chemical Testing - Accredited / A2LA Certificate Number 883.01

## 10.5 ISO/IEC Guide 34 "General Requirements for the Competence of Reference Material Producers"

- Reference Material Producer - Accredited / A2LA Certificate Number 883.02

# 11.0 CERTIFICATION, EXPIRATION AND PERIOD OF VALIDITY

# 11.1 Certification Issue Date

October 01, 2015

## **11.2 Expiration Date**

## 11.3 Period of Validity

- The certification is valid within the measurement uncertainty specified provided the CRM/RM is handled and stored in accordance with instructions given in Sec 7.0 and used prior to the date given in Sec 11.2. This certification is nullified if the CRM/RM is damaged, contaminated, or otherwise modified.

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

## **Certificate Prepared By:**

Maurice Harris Product Documentation Technician

**Certificate Approved By:** 

Brian Alexander PhD., Technical Process Director

Mai A:s Buron allegebrates Paul R. Lainea

#### **Certifying Officer:**

Paul Gaines PhD., Senior Technical Director